1. Almeida, D. (2003). Engendering proof attitudes: Can the genesis of mathematical knowledge
teach us anything? International Journal of Mathematical Education in Science and
Education, 34(4), 479-488.
2. Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from an exploratory
study. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research In College Mathematics
Education III (Pp. 234-283). Providence, RI: AMS.
3. Arslan, Ç. (2007). İlköğretim Öğrencilerinde Muhakeme Etme ve İspatlama Düşüncesinin
Gelişimi. Doktora Tezi, Uludağ Üniversitesi Sosyal Bilimler Enstitüsü, Bursa.
4. Aydoğdu, T. Olkun, S., & Toluk, Z. (2003). İlköğretim öğrencilerinin çözdükleri matematik
problemlerini kanıtlama süreçleri, Eğitim Araştırmaları, 4(12), 64-74.
5. Bahtiyari, Ö., A. (2010). Sekizinci Sınıf Matematik Öğretiminde İspat ve Muhakeme Kavramlarının
ve Önemlerinin Farkındalığı. Atatürk Üniversitesi Fen Bilimleri Enstitüsü,
Erzurum.
6. Arslan, S., & Yıldız, C. (2010). 11. Sınıf öğrencilerinin matematiksel düşünmenin aşamalarındaki
yaşantılarından yansımalar, Eğitim ve Bilim, Cilt 35, Sayı 156.
7. Coşkun, F. (2009). Ortaöğretim Öğrencilerinin Van Hiele Geometri Anlama Seviyeleri İle
İspat Yazma Becerilerinin İlişkisi. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi
Fen Bilimleri Enstitüsü, Trabzon.
8. Güven, B., Çelik, D. & Karataş, İ. (2005). Ortaöğretimdeki çocukların matematiksel ispat
yapabilme durumlarının incelenmesi. Çağdaş Eğitim Dergisi., 30, 319.
9. Moore, R. C. (1990). College Students’ Difficulties In Learning To Do Mathematical
Proofs. Unpublished Doctoral Dissertation, University of Georgia, Georgia.
10. Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in Mathematics,
27, 249-266.
11. Raman, M. J. (2002). Proof and Justification in Collegiate Calculus. Unpublished Doctoral
Dissertation, University Of California, Berkeley.
12. Selden, A., & Selden, J. (2003). Errors and Misconceptions in College Level Theorem
Proving (Tech. Rep. No. 3). Cookeville, TN: Tennessee Technological University, Mathematics
Department.
13. Shipley, A. J. (1999). An Investigation of Collage Students’ Understanding of Proof Construction
When Doing Mathematical Analysis Proofs. Unpublished Doctoral Dissertation,
University Of American, Washington.
14. VanSpronsen, H. D. (2008). Proof Processes of Novice Mathematics Proof Writers. Unpublished
Doktoral Dissertation, University of Montana.
15. Weber, K. (2001). Student Difficulty in Constructing Proofs: The Need for Strategic
Knowledge. Educational Studies in Mathematics, 48, 101-119. 16. Weber, K. (2005). Problem solving, proving and learning: The relationship between problem
solving processes and learning opportunities in the activity of proof contruction, Journal
of Mathematical Behaviour, 24: 351-360.
17. Moralı, S., Uğurel, I., Türnüklü, E., & Yeşildere, S. (2006). Matematik öğretmen
adaylarının ispat yapmaya yönelik görüşleri. Kastamonu Eğitim Dergisi, 14, 1, 147-160.
18. Sarı, M., Altun, A., & Aşkar, P. (2007). Üniversite öğrencilerinin analiz dersi kapsamında
matematiksel kanıtlama süreçleri: Örnek olay çalışması. Ankara Üniversitesi Eğitim Bilimleri
Fakültesi Dergisi, 40(2), 295–319.
19. İmamoğlu, Y. (2010). Birinci ve Son Sınıf Matematik ve Matematik Öğretmenliği Öğrencilerinin
İspatla İlgili Kavramsallaştırma ve Becerilerinin İncelenmesi. Doktora Tezi,
Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
20. Stylianides, G. J., Stylianides, A. J. & Philippou. (2007). Preservice teachers’ knowledge
of proof by mathematical induction. Journal of Mathematics Teacher Education, 10, 145-
166.
21. National Council of Teachers of Mathematics. (2000). Principles and standarts for school
mathematics. Reston, VA: National Council of Teachers of Mathematics.
22. MEB (2005a). İlköğretim Okulu Matematik Dersi 6-8 Sınıflar Öğretim Programı. Devlet
Kitapları Müdürlüğü Basım Evi.
23. MEB, (2005b). Ortaöğretim (9–12). Sınıflar Programları Tanıtım El Kitabı. Milli Eğitim
Bakanlığı Talim ve Terbiye Kurulu Başkanlığı. Ankara: Devlet Kitapları Müdürlüğü Basım
Evi.
24. Hanna, G. & Barbeau, E. (2008). Proofs as bearers of mathematical knowledge. ZDM
Mathematics Education, 40:345–353.
25. Mariotti, M. A. & Balacheff, N. (2008). Introduction to the special issue on didactical
and epistemological perspectives on mathematical proof. ZDM Mathematics Education,
40:341–344.
26. Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies
in Mathematics 44: 5–23.
27. Hanna, G. & Jahnke, H. N. (1999). Using arguments from physics to promote understanding
of mathematical proofs. In O. Zaslavsky (ed.), Proceedings of the twenty third
conference of the international group for the psychology of mathematics education, 3,
73–80. Haifa, Israel.
28. Almeida, D. (2000). A survey of mathematics undergraduates interaction with proof: some
implications for mathematics education. International Journal of Mathematical Education
in Science and Technology, 31: 6, 869-890.
29. Heinze, A. & Reiss, K. (2003). Reasoning and Proof: Methodological Knowledge as a
Component of Proof Competence. In M.A. Mariotti (Ed.), Proceedings of the Third Conference
of the European Society for Research in Mathematics Education, Bellaria, Italy.
30. Jones, K. (2000). The student experience of mathematical proof at university level. International
Journal of Mathematical Education in Science and Technology, 31, 1, 53-60.
31. Baştürk, S. (2010). First-year secondary school mathematics students’ conceptions mathematical
proofs and proving. Educational Studies, 36(3), 283-298. 32. Jones, K. (1997). Student teachers’ conceptions of mathematical proof. Mathematics Education
Review, 9, 21-32.
33. Öçal, M. F. & Güler, G. (2010). Pre-service mathematics teachers’ views about proof by
using concept maps. Procedia Social and Behavioral Sciences, 9, 318–323
34. Raman, M. J. (2003). Key ideas: What are they and how can they help us understand how
people view proof? Educational Studies in Mathematics, 52(3), 319-325.
35. Varghese, T. (2009a). Concept maps to assess student teachers’ understanding of mathematical
proof, The Mathematics Educator, 12(1), 49-68.
36. Varghese, T. (2009b). Secondary-level student teachers’ conceptions of mathematical proof,
IUMPST: The Journal. Vol. 1 (Content Knowledge), [www.k-12 prep.math.ttu.edu].
37. Yıldırım, A. ve Şimşek, H. (2005). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Seçkin
Yayınları, Ankara.
38. Patton, M. Q. (2002). Qualitative Research & Evaluation Methods. Thousand Oaks, CA:
Sage Publications.
39. Corbin, J. M., & Strauss, A. C. (2007). Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. Thousand Oaks, CA: Sage Publication.
Thank you for copying data from http://www.arastirmax.com