Buradasınız

İlköğretim Matematik Öğretmenliği Öğrencilerinin Sürekli Fonksiyonlarla İlgili İspatlama ve Ters Örnek Oluşturma Performansları

Proofing and Counter-exampling Performances of Students in the Elementary Mathematics Education Department for Continuous Functions

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In advanced mathematical thinking, proof and counterexample are very important to indicate why a proposition is true or false and whether such proposition exists or not. It is important for students to learn counter-exampling and proofing within function domains because functions are frequently mentioned and used within many mathematics courses. Recent studies have revealed that students have difficulty in mathematical proofs. Most of these studies have focused on the potentiality of proofing and counter-exampling within the domains of functions. The aim of this study is to measure proofing and counter-exampling skills of students and to determine their mathematical perceptions. The findings show that participants experience problems in proofing and counter-exampling, and in the light of these findings, it is assumed that it is necessary to exemplify proofs and counterexamples carefully in learning and teaching process. Furthermore, to prove a theorem or to set a counterexample may contribute to the formation of a teaching draft within the advanced mathematics and curriculum analysis courses.
Abstract (Original Language): 
Üst düzey matematiksel düşünmede, ispat yapma ve ters örnek verme bir önermenin niçin doğru veya yanlış olduğunu ve böyle bir önermenin olup olmadığını göstermek için çok önemli yere sahiptir. Öğrenciler birçok matematik dersinde sürekli fonksiyonlarla karşılaştıklarından fonksiyonların tanım bölgelerinde ispatları ve ters örnekleri öğrenmeleri önemlidir. Son zamanlarda, yapılan çalışmalar matematiksel ispatlarda öğrencilerin zorlandıklarını ortaya koymuştur. Bu araştırma çalışmalarının birçoğu lisans düzeyinde sürekli fonksiyonların tanım bölgelerinde ispat ve ters örneklerin üretilebileceği üzerine odaklanmıştır. Yaptığımız bu çalışmanın amacı da, öğrencilerin ispat ve ters örnek üretme yeteneklerini ve matematiksel algılarını belirlemektir. Bu çalışmanın bulguları, katılımcıların ispat ve ters örnek yazmada zorluk yaşadıklarını, öğrenme ve öğretmede ispat ve ters örnek verirken daha dikkatli olunması gerektiğini düşündürmektedir. Daha da önemlisi, bir teoremin ispatını yapmak veya ters örnek kurmak müfredat analizi ve ileri matematik derslerinde öğretim tasarımı oluşturma düşüncesini geliştirebilir.
26
42

REFERENCES

References: 

Alcock, L. & Weber, K. (2005). Proof validation in real analysis: Inferring and checking warrants. Journal of Mathematical Behavior 24, 125–134.
Balacheff, N. (1991a). Benefits and limits of social interaction: The case of teaching mathematical proof. In A. In A. J. Bisop, E. Mellin-Olsen, & J. van Dormolen (Eds.). Mathematical knowledge: Its growth through teaching. Dordrecht, The Netherlands: Kluwer. 175- 192.
Bills, L., Dreyfus, T.,Mason, J., Tsamir, P.,Watson, A., & Zaslavsky, O. (2006). Exemplification inmathematics education. In J. Novotná, H.Moraová,M. Krátká, & N. Stehliková (Eds.), Proceedings of the 30th conference of the international group for the psychology of mathematics education, vol. 1 (pp. 126–154). Prague: Czehia.
Baştürk, S & Dönmez, G. (2011). Mathematics student teachers’ misconceptions on the limit and continuity concepts. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 5 (1), 225-249.
Bell, A. W. (1979). The learning of process aspects of mathematics Educational Studies in Mathematics, 10 (3), 361-366.
Bergqvist, E (2007). Types of reasoning required in university exams in mathematics. Journal of Mathematical Behavior 26, 348–370.
Bezuidenhout, J. (2001). Limits and continuity: Some conceptions of first-year students. International Journal of Mathematical Education in Science and Technology, 32(4), 487–500.
Bishop, S. Mellin-Olsen and J. van Dormolen (eds.), Mathematical Knowledge: Its Growth Through Teaching, Kluwer, Dordrecht, 175-192.
Goetting, M. (1995). The College Student's Understanding of Mathematical Proof, Doctoral Dissertation, University of Maryland.
Harel, G. & Sowder, L. (1998). Students' proof schemes: Results from exploratory studies. In A.H. Schoenfeld, J. Kaput, and E. Dubinsky (eds.), Research in Collegiate Mathematics Education III American Mathematical Society, Providence, RI, 234-283.
Healy, L. & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education 31 (4), 396-428.
Hitt, F. (1994). Teachers' difficulties with the construction of continuous and discontinuous functions. Focus on Learning Problems in Mathematics 16 (4), 10-20.
Ko, Y. Y. (2010). Proofs and Counterexamples: Undergraduate Students' Strategies for Validating Arguments, Evaluating Statements and Constructing Productions , Ph.D. Dissertation, The University of Wisconsin-Madison.
Ko, Y.Y. & Knuth E. (2009a). Undergraduate mathematics majors’ writing performance producing proofs and counterexamples about continuous functions. Journal of Mathematical Behavior, 28 , 68–77.
Ko, Y. Y. & Knuth, E. (2009b). Problems manifested in prospective secondary mathematics teachers’ proofs and counterexamples in differentiation. In F. L. Lin, F. J. Hsieh, G. Hanna & M. Villiers (Eds), Proceedings of the ICMI Study 19 conference: Proof and Proving in Mathematics Education, vol. 1 Taipei, Taiwan (pp. 262-267).
Middle Eastern & African Journal of Educational Research, Issue 11
Year 2014
42
Lin, F. L. (2005). Modelling students’ learning on mathematical proof and refutation. In H. L. Chick, & J. L. Vincent (Eds.), Proceedings of the 29th of the international group for the psychology of mathematics education, vol. 2 Melbourne, Australia, (pp. 3–18).
Lithner, J (2004). Mathematical reasoning in calculus textbook exercises. Journal of Mathematical Behavior 23, 405-427.
Martin, W.G. & Harel, G. (1989). Proof frames of preservice elementary teachers. Journal for Research in Mathematics Education, 20 (1), 41-51.
Peled, I., & Zaslavsky, O. (1997). Counter-example that (only) prove and Counter-example that (also) explain. Focus on Learning Problems in mathematics, 19, 49–61.
Senk, S. L. (1985). How well do students write geometry proofs? Mathematics Teacher 78 (6), 448-456.
Stylianides, G. J. (2009). Reasoning-and-Proving in School Mathematics Textbooks, Mathematical Thinking and Learning, 11, 258–288
Tall, D (1989). The nature of mathematical proof. Mathematics Teaching, 28–32.
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics,12(2), 151–169.
Umay, A. (2003). Mathematical reasonıng ability. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 24, 234-243.
Weber, K. (2004). A framework for describing the processes that undergraduates use to construct proofs. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 4, 425–432.
Weber, K. & Alcock, L. (2004). Semantic and syntactic proof productions. Educational Studies in Mathematics, 56 (2/3), 209-234.
Whiteley, W. (2009). Refutations: the role of counter-examples in developing proof. . In F. L. Lin, F. J. Hsieh, G. Hanna & M. Villiers (Eds), Proceedings of the ICMI Study 19 conference: Proof and Proving in Mathematics Education, vol. 2 Taipei, Taiwan (pp. 257-262).
Zazkis, R., & Chernoff, E. J. (2008).What makes a counterexample exemplary? Educational Studies in Mathematics, 68, 195–208.

Thank you for copying data from http://www.arastirmax.com