Buradasınız

Fe-18%Cr-10%Mn-16%Ni ve Fe-18%Cr-12%Ni-2%Mo ALAŞIMLARININ FONON DİSPERSİYONU

PHONON DISPERSION of Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-2%Mo ALLOYS

Journal Name:

Publication Year:

Abstract (2. Language): 
In the present paper, to investigate the phonon frequencies of face-centered-cubic (f.c.c.) Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-2%Mo alloys it has been used an empirical many-body potential (MBP) developed by Akgün and Uğur, recently. The parameters defining the MBP f.c.c. alloys may be computed by following a procedure described. The radial, tangential and three-body force constants of the alloys have been calculated. Finally, the phonon frequencies of the alloys along the principal symmetry directions have been computed using the calculated two-and three-body force constants. The theoretical results are compared with the experimental phonon dispersions. The agreement shows that the proposed MBP provides a reasonable description of the f.c.c. alloys.
Abstract (Original Language): 
Bu çalışmada, Akgün ve Uğur tarafından tanımlanan çok-cisim etkileşmeli potansiyeli (MBP) kullanılarak fcc Fe-%18Cr- %10Mn-%16Ni, Fe-%18Cr-%12Ni-%2Mo alaşımlarının fonon frekansları incelendi. İncelenen alaşımların MBP 'yi tanımlayan parametreleri tanımlanan metoda göre hesaplandı. Alaşımların açısal, radyal ve üç-cisim kuvvet sabitleri hesaplandı. Sonuç olarak alaşımların fonon frekansları temel simetri doğrultuları boyunca, hesaplanan iki ve üç-cisim kuvvet sabitleri kullanılarak bulundu. Fonon dispersiyonlarında teorik sonuçlar deneysel sonuçlarla karşılaştırıldı. f.c.c. alaşımlarda, potansiyelin etkili olduğu görüldü.
1 - 5

REFERENCES

References: 

[1]. S. Kim, H.Ledbetter and Y.Y. Li, Elastic constants of
four Fe-Cr-Ni-Mn alloys, Journal of Materials Science,
29, 5462 (1994).
[2]. M.Hoelzel, S.A.Danilkin, A. Hoser, H. Ehrenberg, T.
Wieder and H. Fuess, Phonon dispersion in austenitic
stainless steel Fe – 18Cr – 12Ni – 2Mo, Appl. Phys. A
[Suppl.], 74, S1013 (2002).
[3]. F. Milstein, J. Appl. Phys. 44, 3825 (1973).
[4]. İ. Akgün and G. Uğur, Three-Body Effect on the
Lattice Dynamics of Pd-10%Fe Alloys, Phys. Rev. B
51, 3458 (1995).
[5]. İ. Akgün and G. Uğur, Three-Body Effect on the
Lattice Dynamics of Pd-28%Fe Alloy, II Nuovo
Cimento D 19, 779 (1997).
[6]. M.D. Morse, Chem. Rev. 86, 1049 (1986).
[7]. C. Kittel, Introduction to Solid State Physics, 3rd
edition (Wiley) 1966.
[8]. K. Aradhana and R.P.S. Rathore, Phys. Stat. Sol. (b)
156, 77 (1986).
[9]. G. Singh and R.P.S. Rathore, Generalized Morse
Potantial and Mechanical Stability of Calcium and
Ytterbium, Indian J. Appl. Phys. 24, 303 (1986).
[10]. F. Milstein and D.J. Rasky, Solid State Commun. 55,
729 (1985).
[11]. R. Shyam, S.C. Upadhyaya and J.C. Upadhyaya,
Phys. Stat. Sol. (b) 161, 565 (1990).
[12]. M.K. Mıshra, P. Srivastava and S.K. Mıshra, A
Lattice Dynamical Study of Nickel Based on the Morse
Potential, Phys. Stat. Sol. (b) 171, K5 (1992).
[13]. Danilkin, S.A., Fuess, H., Wieder, T., and Hoser, A.,
Phonon dispersion and elastic constants in Fe-Cr-Mn-
Ni austenitic steel, Journal of Materials Science, 36,
811-814 (2001).
[14]. Danilkin, S. A. and Jadrowski, E. L., Phonon
Dispersion in Fe-18Cr-10Mn-15Ni f.c.c. Steel, Physica
B,: 234(236), 900-902 (1997.

Thank you for copying data from http://www.arastirmax.com