Buradasınız

SICAK YÜZEYLERİN SU SİSİYLE SOĞUTULMASININ SAYISAL İNCELENMESİ

A NUMERICAL INVESTIGATION OF WATER MIST COOLING ON HOT SURFACES

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
A numerical model is developed to simulate for atmospheric applications with spray on heated high temperatures surfaces. The simulations conditions of water mist cover the variations of air velocity from 0-50.29 m/s, liquid mass flux from 0-7.67 kg/m2s, and surface temperature of stainless steel between 5250C and 5000C. Radial heat transfer distributions were obtained from computational analysis at different liquid mass flux and compared with experimental results. The computational analysis revealed that the radial variation of heat transfer coefficients of water mist has a similar trend to the air jet cooling. The highest heat transfer rate occurred at the stagnation point. This study shows that with a small amount of water added in the impacting air jet, the heat transfer is dramatically increased.
Abstract (Original Language): 
Atmosferik koşullarda yüksek sıcaklıktaki yüzeylerin spreyle soğutulması için bir sayısal model geliştirilmiştir. Su damlacıklarını taşıyan hava hızı 0-50.29 m/s, sıvı kütle akısı 0-7.67 kg/m2s ve paslanmaz çelik yüzey sıcaklığı 5000C ile 5250C aralığında değişmektedir. Değişik sıvı kütle akılarında radyal ısı taşınım katsayıları sayısal olarak elde edildi ve literatürdeki sonuçlarla karşılaştırıldı. Yapılan sayısal çözümde, ısı taşınım katsayısının radyal yönde hem hava spreyinde hem de su sisi spreyinde benzer bir eğilim gösterdiği görülmüştür. Maksimum ısı transferi, durgunluk bölgesinde meydana gelmektedir. Bu çalışma hava spreyi içerisine katılacak küçük miktarda suyun ısı taşınım katsayısını dikkate değer bir biçimde arttırdığını göstermektedir.
42 - 49

REFERENCES

References: 

[1] EVANS, J-F., Numerical Modeling of hot strip mill
runout table cooling, Iron and Steel Eng., pp. 50-55, 1993
[2] AUNZINGERI, D., PARZEN, F., POSCH, G.,
Process optimization for laminar cooling, Association of
Iron and Steel Eng., AISE, 2, pp. 1293-1304, 1997.
[3] ISHIDA, R., Basic characteristic of pipe nozzle
cooling with retaining water on plate, ISIJ International,
29, 4, pp. 339-344, 1989.
[4] HADRIAN, U-T., The cooling efficiency of laminarorthogonal
water (LOW) curtains in hot strip mill,
Metallurgical Plant and Technology, 6, pp. 44-49, 1984.
[5] SÖZBİR, N., CHANG. Y-W., YAO, S-C., Heat
transfer of impacting water mist on high temperature
metal surface, ASME Journal of Heat Transfer, 125, pp.
70-74, 2003.
[6] SÖZBİR, N., YAO, S-C., Investigation of water mist
cooling for glass tempering system, ASME Int. 6th
Biennial Conference on Engineering Systems Design and
Analysis, ESDA, Istanbul, Turkey, 2002.
[7] YANG, J., PAIS, M., CHOW, L., Critical heat flux
limits in secondary gas atomized liquid spray cooling,
Exp. Heat Transfer, 6i pp. 55-67, 1993.
[8] YANG, J., CHOW, L., PAIS, M., Nucleate boiling
heat transfer in spray cooing, Journal of Heat Transfer,
118, pp. 668-671, 1996.
[9] XISHI, W., GUANGXUAN, L., WEICHING, F.,
DOBASHI, R., Experimental study on cooling a hot solid
surface with water mist, Journal of Fire Science, 22, 5, pp.
355-366, 2004.
[10] ISSA, R-J., YAO, S-C., A numerical model for the
mist dynamics and heat transfer at various ambient
pressure, ASME Journal of Fluid Engineering, 127, pp.
631-639, 2005.
[11] SÖZBİR, N., YAO, S-C., Experimental investigation
of water mist cooling for glass tempering, Atomization
and Sprays, 14, 3, pp. 191-210, 2004.
[12] CHANG, Y-W., YAO, S-C., Studies of water mist
cooling on heated metal surfaces, Proceedings of
NHTC’00, 34th National Heat Transfer Conference, 1,
New York, pp. 682-690, 2000.
[13] LAUNDER, B-E., SPALDING, D-B., Lectures in
mathematical models of turbulence, Academic Press.,
London, England, 1972.
[14] VERSTEEG, H-K., MALALASEKERA, W., An
introduction to computational fluid dynamics, Longman
Scientific & Technical, 1995.
[15] PATANKAR, S-V., Numerical heat transfer and
fluid flow, Taylor & Francis Inc., 2007.
[16] Fluent User Manuel.
[17] MORSI, S-A., ALEXANDER, A-J., An investigation
of particle trajectories in two-phase flow systems, Journal
of Fluid Mechanics, 55, 2, pp. 193-208, 1972.
[18] INCROPERA, F-P., DEWITT, D-P., Fundamental of
heat and mass transfer, John Wiley & Sons Inc., New
York, 2001.

Thank you for copying data from http://www.arastirmax.com