Buradasınız

ÇOK AMAÇLI LİNEER KESİRLİ PROGRAMLAMA PROBLEMİNE BİR ÇÖZÜM ÖNERİSİ

PROPOSAL OF A SOLUTION TO MULTI OBJECTIVE LINEAR FRACTIONAL PROGRAMMING PROBLEM

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper, we have proposed a solution algorithm for solving Multi Objective Linear Fractional Programming Problem (MOLFPP). We have positive objective functions for all x∈X by translating objective functions that are negative for some x∈X . Then, we have a single objective function as minimization of the deviations from maximum values of objective functions in the feasible region . So, MOLFPP transformed to goal programming problem. The proposed algorithm to solving MOLFPP always yields efficient solutions. Using the proposed solution to MOLFPP have been given three numerical examples and solved them using computer packet program WinQSB.
Abstract (Original Language): 
Bu makalede, Çok Amaçlı Lineer Kesirli Programlama Problemine bir çözüm algoritması önerdik. Uygun çözüm bölgesindeki bazı x∈X değerleri için negatif değerlere sahip amaç fonksiyonlarına dönüşüm uygulayarak tüm amaç fonksiyonlarını uygun bölgede pozitif yaptık. Daha sonra, amaç fonksiyonlarının uygun bölgedeki maksimum değerlerinden sapmalarını minimize ederek, aynı uygun bölgede Çok Amaçlı Lineer Kesirli Programlama Problemini tek amaçlı lineer programlama problemine, yani, hedef programlamaya dönüştürdük. Elde edilen hedef programlama probleminin optimal çözümü daima Çok Amaçlı Lineer Kesirli Programlama Probleminin etkin çözümlerini vermektedir. Önerdiğimiz çözüm algoritmasını kullanarak üç farklı sayısal örnek verilmiştir.Verilen örnekler WinQSB paket programıyla çözülmüştür..
FULL TEXT (PDF): 
43-50

REFERENCES

References: 

[1] Y.J.Lai,C.L.Hwang, Fuzzy Multiple Objective Decision Making, Springer,1996.
[2] A.Charnes, W.W. Cooper, programming with linear fractional functionals, Nav. Res.
Logistics Quart. 9 (1962), 181-186.
[3] S.Zionts, Programming with linear fractional functionals, Nav. Res. Logistics Quart. 15
(1968), 449-451.
[4] E.Munteanu, I. Rado, Calculul, Sarjelar celor mai economice la cuptoarecle de topit fonta,
studii si cercetari matematice , cluj, faseiola anexa XI, 1960, pp 149- 158.
[5] A.C. Gilmore , R.E. Gomory, A linear programming approach to the cutting stock
problem II, Oper. Res 11 (1963) 863-888.
[6] A.Sengupta,T.P.Pal,M.Chakraborty,Interpretation of inequality constraints involving
interval coefficients and a solution to interval linear programming, Fuzzy Sets and
systems 119(2001)129-138.
[7] M.Chakraborty, Sandipan Gupta, Fuzzy mathematical programming for multi objective
linear fractional programming problem, Fuzzy Sets and Systems 125 (2002) 335-342.
[8] S.Schaible, Analyse and Anwendungen von Quatienten programmen verlag Anton Hain,
Meisenheim am Glan , 1978.
[9] B.D.Craven, Fractional Programming, Heldermann Verlag, Berlin, 1988.
[10] E.U. Choo, D.R. Atkins, Bicriteria Linear fractional programming, J.Optim. Theory Appl.
36 (1982), 203-220.
[11] J.S.H. Kornbluth, R.E. Steuer, Multiple Objective Linear Fractional Programming
Manage . Sci. 27 (1981) 1024-1039.
[12] I. Nykowski, Z.Zolkiewski, A compromise procedure for the multiple objective linear
fractional programming problem, European J. Oper. Res. 19 (1985) 91-97.
[13] M.K. Luhandjula, Fuzzy approaches for multiple objective linear fractional optimization,
Fuzzy Sets and Systems 13, (1984) 11-23.
[14] D.Dutta, R.N. Tiwari, J.R.Rao, Multiple objective linear fractional programming -A fuzzy
set theoretic approach, Fuzzy Sets and Systems 52 (1992) 39-45.

Thank you for copying data from http://www.arastirmax.com