Buradasınız

GEOMETRİK NONLİNEERİTE DURUMUNDA YEREL EĞRİLİKLİ LİF İÇEREN ELASTİK ORTAMDAKİ NORMAL GERİLMELER HAKKINDA

ON THE NORMAL STRESSES IN THE ELASTIC BODY WITH A LOCALLY CURVED FIBRE UNDER GEOMETRIC NONLINEAR STATEMENT

Journal Name:

Publication Year:

AMS Codes:

Abstract (2. Language): 
In the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically nonlinear exact equations of the theory of elasticity, the method developed for the determination of the stress distribution in the unidirectional fibrous composites with locally curved fibres is used to investigate related normal stresses for the case where the interaction between the fibres is not taken into account. All investigations are made for an infinite elastic body containing a single locally curved fibre. Under uniaxial loading along the fibre the normal stresses acting on the interface are studied and the numerical results illustrated the effect of the geometrical nonlinearity on the distribution of the stresses are presented.
Abstract (Original Language): 
Yerel eğrilikli lifler içeren tek yönlü lifli kompozitlerde gerilme yayılımının belirlenmesi için, parçalı homojen cisim modeli çerçevesinde elastisite teorisinin üç-boyutlu geometrik nonlineer kesin denklemleri kullanılarak geliştirilen yöntem ilgili normal gerilmelerin araştırılmasında, lifler arasındaki etkileşimin ihmal edildiği durum için, kullanılmıştır. Tüm araştırmalar yerel eğrilikli tek lif içeren sonsuz elastik cisim için yapılmıştır. Lif boyunca yapılan tek yönlü yükleme altında arayüzeydeki normal gerilmeler çalışılmış ve bu gerilmelere geometrik nonlineeritenin etkisini gösteren sayısal sonuçlar verilmiştir.
97-108

REFERENCES

References: 

[1] Tarnopolsky Yu.M., Jigun I.G. and Polyakov V.A., “Spatially-reinforced composite
materials”, Handbook, Mashinostroyenia, Moscow, 1987 (in Russian).
[2] Guz A.N., “Failure mechanics of composite materials in compression”. –Kiev: Naukova
Dumka, 1990. –630 p. (in Russian.)
[3] Kelly A., “Composite Materials: impediments do wider use and some suggestions to
overcome these”, In Proceeding Book ECCM-8, 3-6 June 1998, Napoles-Italy, Vol.I, 15-
18.
[4] Akbarov, S.D. and Guz, A.N., “Mechanics of Curved Composites”,-Kluwer Academic
Publishers, 2000-464p.
[5] Guz A.N., “On one two-level model in the mesomechanics of compression fracture of
Cracked Composites”, Int. Appl. Mech., 2003, 39, N0:3, 274-285.
[6] Akbarov, S.D. and Guz, A.N. “Method of Solving Problems in the Mechanics of Fiber
Composites With Curved Structures”, Soviet Applied Mechanics, -1985-March-p.777-
785.
[7] Akbarov, S.D. and Guz, A.N., “Mechanics of curved composites (piecewise homogenous
body model)”, Int. Appl. Mech., 2002, 38, N0:12, 1415-1439.
[8] Kosker R. and Akbarov, S.D., “Influence of the interaction between two neighbouring
periodically curved fibers on the stress distribution in a composite material”, Mechanics
of Composite Materials,2003, Vol.39, No. 2, 165-176.
[9] Akbarov, S.D. and Kosker R., “On a stress analysis in the infinite elastic body with two
neighbouring curved fibers”, Composites Part B: Engineering, 2003, 34/2, 2003, 143-150.
[10] Djafarova E.K., “On the solution method of the stress-strain state problems in the fibrous
composites with locally curving structures”, Tr. Nauch. Konf. Molod. Uchyon. In-ta
Mekhan. AN Ukr., Kiew, 1992.-Part I. –p.39-44 (in Russian).
[11] Djafarova E.K., “Distribution of self-equilibrated stresses in fibrous composite materials
with local curving in the structures”, Dep. In VINITI, N 2166-B94, 07.09.1994. –34p (in
Russian).
[12] Djafarova E.K., “Stress state in composite materials with local curving fibers”,
Dissertation for the degree of Candidate of Physico-Mathematical Sciences. Inst. Methem.
And Mekhan. AN Azerb. Republ. Baku, 1995. –110p. (in Russian).
[13] S. D. Akbarov, R.Kosker and K. Simsek, “Stress Distribution In An Infinite Elastic Body
With A Locally Curved Fiber In A Geometrically Nonlinear Statement” Mechanics of
Composite Materials, 41 (4): 291-302, July, 2005.
[14] Guz, A.N. “Fundamentals of the Three-Dimensional Theory of Stability of Deformable
Bodies”, -Springer, 1999-555p.

Thank you for copying data from http://www.arastirmax.com