Buradasınız

REAKTİF BOYAR MADDE İÇEREN TEKSTİL ATIKSULARININ İLERİ OKSİDASYONU

Advanced Oxidation of Reactive Dyestuff Containing Textile Wastewaters

Journal Name:

Publication Year:

Abstract (2. Language): 
The textile industry wastewater contains high concentrations of organic and inorganic chemicals and is characterized by strong color and high total organic carbon (TOC) and chemical oxygen demand (COD) values. Treatment of such wastewater by conventional treatment systems is hard and advanced technologies are required. Fenton and UV/ H2O2 processes are known to be the most effective and common methods for the treatment of such wastewaters. In the present study H2O2 was used with FeSO4 and UV for the treatment of Remazol Black B (Reactive Black 5) and the effects of H2O2, FeSO4 concentrations and oxidation time parameters were investigated for the best color and TOC removals.
Abstract (Original Language): 
Tekstil endüstrisi atıksuları yüksek miktarda organik ve inorganik kimyasallar içermekte ve yüksek toplam organik karbon (TOK), kimyasal oksijen ihtiyacı (KOI) ve yoğun renk ile karakterize edilirler. Bu atıksuların konvansiyonel sistemlerle arıtımı zordur ve ileri arıtma tekniği gerektirmektedir. Fenton ve UV/ H2O2 prosesleri bu tür atıksuların arıtımında kullanılan en yaygın ve en etkili yöntemler olarak bilinmektedir. Bu çalısmada H2O2, FeSO4 ve UV ile birlikte kullanılarak remazol black B (Reaktif Black 5) boyar maddesi içeren sentetik olarak hazırlanmıs atıksudan en iyi renk ve TOK giderimi için H2O2, FeSO4 konsantrasyonu ve oksidasyon süresi gibi parametrelerin etkisi incelenmistir.
119-128

REFERENCES

References: 

1. Adams, C. D. and Kuzhikannil, J. J. (2000) Effects of UV/H2O2 preoxidation on the aerobic biodegradability
of quaternary amine surfactants. Wat. Res. 34, 668-672.
2. Akal, Solmaz, S.K., Birgül, A., Üstün G.E., and Yonar, T., (2006) Colour and COD removal from textile
effluent by coagulation and advanced oxidation processes. Color. Technol., 122, 102–109.
3. Akmehmet Balcıoğlu, I., Arslan Alaton, Đ., Ötker, M., Bahar, R., Bakar, N., Đkiz, M., (2003) Application of
Advanced Oxidation Processes to Different Industrial Wastewaters. Journal Of Envıronmental Scıence And
Health,A38, 1587–1596
4. Arslan, I., Balcıoğlu, I.A. (1999) Degradation of commercial reactive dyestuffs by heterogenous and
homogenous advanced oxidation processes: a comparative study. Dyes Pigm. 43, 95–108.
5. Azbar, N., Yonar, T., Kestioğlu, K., (2004) Comparison of various advanced oxidation processes and
chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent,
Chemosphere 55 (1), 35–43.
6. Brosillon, S., Djelal, H., Merienne, N., Amrane, A. (2008) Innovative integrated process for the treatment of
azo dyes: coupling of photocatalysis and biological treatment. Desalination 222, 331–339.
7. Garcia-Montano, J., Torrades, F., Garcia-Hortal, J.A., Domenech, X., Peral, J., (2006) Degradation of
Procion Red H-E7B reactive dye by coupling a photo-Fenton system with a sequencing batch reactor.
Journal of Hazardous Materials B134, 220–229.
8. Gogate R., Pandit, B. (2004) A review of imperative Technologies for wastewater treatment I: oxidation
technologies at ambient conditions. Adv. Environ. Res. 8, 501–551.
9. Gültekin, I. and Đnce, N.H., (2004) Degradation of Reactive Azo Dyes by UV/H2O2: Journal Of
Envıronmental Scıence And Health A39, 1069–1081.
10. Đnce, N.H. And Gönenç, D.T. (1997) Treatability of a Textile Azo Dye by UV/H2O2. Environmental
Technology. 18:179-185.
11.Kurbus, T., Le Marechal, A. M., Voncina, D. B. (2003) Comparison of H2O2/UV, H2O2/O3 and H2O2/Fe+2
processes for the decolorisation of vinylsulphone reactive dyes. Dyes and Pigments 58, 245–252.
12.Mass, R., Chaudhari, S. (2005) Adsorption and biological decolorization of azo dye Reactive Red-2 in semi
continuous anaerobic reactors. Process Biochem. 40, 699–705.
13.Muruganandham, M., Swaminathan, M. (2004). Photochemical oxidation of reactive azo dye with UV–H2O2
process. Dyes and Pigments 62, 269–275.
14.Namboodri, C.G. and Walsh, W.K. (1996) Ultraviolet Light/Hydrogen Peroxide System for Decolorizing
Spent Reactive Dyebath Waste Water. American Dyestuff Reporter.
15.Neamtu, M., Siminiceanu, I., Yediler, A., Kettrup, A., (2002) Kinetics of decolorization and mineralization
of reactive azo dyes in aqueus solution by UV/H2O2 oxidation. Dyes and Pigments 53, 93–99.
16. Papadopoulos, A.E., Fatta, D., Loizidou, M., (2007) Development and optimization of dark Fenton oxidation
for the treatment of textile wastewaters with high organic load. Journal of Hazardous Materials 146, 558-
563.
17. Peternel, I., Koprivanac, N., Kusic, H. (2006) UV-based processes for reactive azo dye mineralization. Water
Research 40, 525 – 532.
18.Riga, A., Soutsasb K., Ntampegliotisa, K., Karayannisa, V., Papapolymerou, G.(2007) Effect of system
parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison
of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination 211, 72–86.
19. Shu, H., Huang, C., Chang, M. (1994) Decolorization of Mono-Azo Dyes in Wastewater by Advanced
Oxidation Processes: A Case Study of Acid Red 1 and Acid Yellow 23. Chemosphere. 29:2597-2607.
20. Shu, H.Y., Chang, M.C. (2005) Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes,
Dyes Pigment. 65, 25–31.
21. Tantak, N.P., Chaudhari, S., (2006) Degradation of azo dyes by sequential Fenton’s oxidation and aerobic
biological treatment. Journal of Hazardous Materials B136 698–705.
22.Walling, C. Fenton’s reagent revisited. Acc. Chem. Res. 8, 125–131,1975.
23.Walling, C., Clearly, M. (1977) Oxygen evaluation as a critical test of mechanism in the ferric-ion catalyzed
decomposition of hydrogen peroxide. Int.J.Chem.Kinetics IX, 595–601.
24.Yang, Y., Wyatt, D.T.I., Bahorshky, M. (1998) Decolorization of Dyes Using UV/H2O2 Photochemical
Oxidation. Textile Chemist and Colorist. 30:27-35.

Thank you for copying data from http://www.arastirmax.com