Buradasınız

Tavşanda Deneysel Osteoartrit Modelinde İnsan Amniotik Sıvısının Eklem İçi Uygulamasının Kıkırdak Doku ve Sinovya Üzerindeki Etkileri

The Effects of Intra-Articular Injections of Human Amniotic Fluid in an Experimental Osteoarthritic Rabbit Model

Journal Name:

Publication Year:

Abstract (2. Language): 
This experimental study aimed to investigate the effects of intra-articular injection of human amniotic fluid (HAF) on articular cartilage and sinovial tissue in a developed osteo-arthritic rabbit knee model. The right knee anterior cruciate ligament was cut to develop osteoarthritis in 20 rabbits. After 4 weeks, 10 rabbits were given intra-articular injections of 0.5ml HAF once a week for 3 weeks (Group I). The other 10 rabbits as control group received no treatment (Group II). Both groups were sacrificed 12 weeks after the final injection. The Meachim morphologic grading for macroscopic evaluation, and modified Mankin evaluation for histopathological cartilage examination, were used. Histological evaluation of the synovial tissue according to Yoshimi histopathologic grading and the synovial lining cell layer thickness was measured. According to morphologic evaluation, 100% of group I had grade 1-2, while were %80 of group II had grade 3-4 (p<0.05). In the histopathological evaluation of the cartilage, the medial femoral condyles and medial tibial plateau in Group I were 6.6 (1- 12) and 7.0 (1-12) respectively, while in Group II they were 17.8 (7-30) and 18.9 (6-30), (p<0.05). Significant differences were observed in the synovial tissue histopathologic grading (p<0.05; Group I 6.3 (3-8), Group II 12.9 (6-17). Mean synovial lining cell layer thickness was 20 µm (10-30) in Group I and 29 µm in Group II (p<0.05). Since HAF, which is an inert fluid, rich in proteins, macromolecules and growth factors, has protective effects against cartilage and synovial tissue changes in an experimental rabbit model, it may be an alternative agent in cartilage protective therapy.
Abstract (Original Language): 
Bu deneysel çalışmada tavşanlarda oluşturulan deneysel osteoartrit modelinde eklem içi uygulanan insan amniyotik sıvı’nın (İAS) eklem kıkırdağı ve sinoviyal dokuya etkisinin araştırılması amaçlanmıştır. Osteoartrit geliştirilmek için 20 tavşanın sağ dizinin ön çapraz bağı kesildi. Dört hafta sonra 10 tavşana birer hafta ara ile 3 kez eklem içi 0,5 ml İAS enjeksiyonu uygulandı. (Grup 1). Diğer 10 tavşanda kontrol grubu olarak kaydedildi ve herhangi bir tedavi uygulanmadı. (Grup 2). En son uygulanan eklem içi enjeksiyondan 12 hafta sonra her iki grupdaki tavşanlar sakrifiye edildi. Eklem kıkırdak dokusunun makroskopik değerlendirilmesi için Meachim morfolojik evreleme sistemi, histopatolojik değerlendirmesi için modifiye Mankin değerlendirme sistemi kullanılmıştır. Sinoviyal doku histolojik değerlendirmesi Yoshimi’ye göre yapılmış ve sinoviyal hücre tabakası kalınlığı da ölçülmüştür. Makroskopik incelemede Grup 1’in %100’ü evre 1–2 iken Grup-2’nin %80’i evre 3–4 olarak değerlendirildi (p<0,05). Kıkırdağın histopatolojik değerlendirmesinde Grup 1’de medial femoral kondil ve medial tibial plato sıra ile 6,6 (1–12) ve 7,0 (1–12), Grup 2 de ise 17,8 (7–30) ve 18,9 (6–30) olarak tespit edildi (p<0,05). Sinoviyal doku histopatolojik derecelendirmesinde belirgin istatistiksel farklılık tespit edildi (p<0,05; Grup–1 6,3 (3–8), Grup–2 12,9 (6– 17)). Ortalama sinoviyal hücre tabakası kalınlığı Grup 1’de 20 µm (10–30) Grup 2’de 29 µm olarak ölçüldü (p<0,05). Sonuç olarak proteinlerden, makromoleküllerden ve büyüme faktörlerinden zengin inert bir sıvı olan İAS’ın, tavşan deneysel osteoartrit modelinde kıkırdak ve sinoviyal dokudaki dejeneratif değişikliklerine karşı koruyucu etkisinin olması nedeniyle kıkırdak koruyucu tedavi ajanlarına bir alternatif olabileceği kanısına varıldı
121-125

REFERENCES

References: 

1. Yoshimi T, Kikuchi T, Obara T, Yamaguchi T, Sakakibara Y,
Itoh H, Iwata H, Miura T. Effects of high-molecular-weight
sodium hyaluronate on experimental osteoarthritis induced by
the resection of rabbit anterior cruciate ligament. Clin Orthop
Res 1994; 298: 296-304.
2. Mendelson S, Wooley P, Lucas D, Markel D. The effect of
hyaluronic acid on a rabbit model of full-thickness cartilage
repair. Clin Orthop Res 2004; 424: 266-71.
3. Kobayashi K, Amiel M, Harwood FL, Haley RM, Sonoda M,
Moriya H, Amiel D. Long-term effects of hyaluronan during
development of osteoarthritis following partial meniscectomy
in a rabbit model. Osteoarthritis Cart 2000; 8:359-65.
4. Clark, I.M., Rowan, A.D. and Cawston, T.E. Matrix
metalloproteinase inhibitors in the treatment of arthritis. Curr
Opin Anti-inflammatory Immunomodulatory Drugs 2, 2000;
16- 25.
5. Merimee TJ, Grant M, Tyson JE. Insulin-like growth factors
in amniotic fluid. J Clin Endocrinol Metab 1984; 752:55.
6. Jıngushi S, Joyce ME, Bolander ME. Basic fibroblast factors
in rat fracture repair. Orthop Trans 1993; 17: 713-14.
7. Özgenel GY, Filiz G, Özcan M. Effects of human amniotic
fluid on cartilage regeneration from free perichondrial grafts
in rabbits. Br J Plast Surg 2004; 57: 427-28.
8. Harris MC, Mennuti MT, Kline JA, Polin RA. Amniotic fluid
fibronectin concentrations with advancing gestational age.
Obstet Gynecol 1988; 72(4):593-5.
9. Özgenel GY, Şamli B, Özcan M. Effects of human amniotic
fluid on peritendinous adhesion formation and tendon healing
after flexor tendon surgery in rabbits. J Hand Surg 2001;
26A(2): 332-9.
10. Özgenel GY. The influence of human amniotic fluid on the
potential of rabbit ear perichondrial flaps to form cartilage
tissue. Br J Plast Surg 2002; 55: 246-50.
11. Özgenel GY, Filiz G. Effects of human amniotic fluid on
peripheral nerve scarring and regeneration in rats. J neurosurg
2003; 98: 371-77.
12. Meachim G. Light microscopy of Indian ink preparations of
fibrillated cartilage. Ann Rheum Dis 1972; 31: 457-64.
13. Peyron JG, Balazs EA. Preliminary clinical assesment of Na-
hyaluronate injection into human arthritic joints. Pathol Biol
1974; 22:131.
14. Kuroki K, Cook JL et al. The effects of TIMP-1 and -2 on
canine chondrocytes cultured in three-dimensional agarose
culture system. Ost Cart 2003; 11: 625-35.
15. Mobasheri A, Vannucci SJ, Bondy CA, Carter SD, Innes JF,
Arteaga MF, Trujillo E, Ferraz I, Shakibaei M, Martin-Vasallo
P. Glucose transport and metabolism in chondrocytes: A key
to understanding chondrogenesis, skeletal development and
cartilage degradation in osteoarthritis. Histol Histopathol
2002; 17:1239-67.
16. Goldring, M.B. Osteoarthritis and cartilage: the role of
cytokines. Curr Rheumatol Rep 2, 2000; 459-65.
17. Shinmei M, Masuda K, Kikuchi T, Shimomura Y. İnterleukin
1, tumor necrosis factor and interleukin 6 as mediatos of
cartilage destruction. Semin Arthritis Rheum 1989; 18(1): 27.
18. Bruce AM, Jefrey HH et al. In vitro degradation of fetal
wound hyaluronic acid results increased fibroplasia, collagen
deposition and neovascularization. Plast Recons Surg 1992;
89(3): 503-9.
19. Yasui T, Akatsuka M, Tobetto K, Hayashi M, Ando T. Effects
of hyaluronan on the production of stromelysin and tissue
inhibitor of meatlloproteinase-1 (TIMP 1) in bovine articular
chondrocytes. Biomed Res 1992; 13: 343-8.
20. Chopra R, Anastassiades T. Specificity and synergism of
polypeptide growth factors in stimulating the synthesis of proteoglycans and a novel high molecular weight anionic glycoprotein by articular chondorcyte cultures. J Rheumatol 1998;
25: 1578-84.
21. Hunziker EB, Rosenberg LC. Repair of partial-thickness
defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg 1996; 78A: 721-33.
22. Van Beuningen HM, van der Kraan PM, Arntz OJ, van den
Berg WB. Transforming growth factor- ß 1 stimulates articular chondrocyteproteoglycan synthesis and induces osteophyte
formation in the murine knee joint. Lab Invest 1994; 71: 279-
90.
23. Rogachefsky RA, Dean DD, Howell DS, Altman RD. treatment of canine osteoarthritis with insulin-like growth factor-1
(IGF-1) and sodium pentosan poly- sulfate. Ost Cart 1993; 1:
105-14.
24. Nixon AJ, Brower-Toland BD et al. Insulinlike Growth
Factor-I gene therapyapplications for cartilage repair. Clin
Orthop 2000; 379S: 201-13.
25. Gonzalez AM, Buscaglia M et al. Distribution of basic fibroblast growth factor in the 18 day rat fetus: localization in the
basement membranes of diverse tissues. J Cell Biol 1990; 110:
753-65.
26. Fujimoto E, Ochi M, Kato Y. Benefical effect of basic fibroblast growth factor on repair of full-thickness defects in rabbit
articular cartilage. Arch Orthop Trauma Surg 1999; 119: 139-
45.
27. Cuevas P, Burgos J, Baird A. Fibroblast growth factor (FGF)
promotes cartilage repair in vivo. Bio Res Comm 1988;
156(2): 611-8.
28. Woessner Jr. MF, Gunja-Smith Z. Role of metalloproteinases
in human osteoarthritis. J Rheumatol 1991; 18; 99-101.
29. Gendron C, Kashiwagi M et al. TIMP-3 inhibits aggrecanasemediated glycosaminoglycan release from cartilage explants
stimulated by catabolic factors. FEBS Letters 2003; 555: 431-
6,
30. Yoshioka M, Shimizu C, Harwood FL, Coutts RD, Amiel D.
The effects of hyaluronan during the development of osteoarthritis. Ost Cart 1997; 5: 251-60.

Thank you for copying data from http://www.arastirmax.com