You are here

ENDODONTIK TEDAVİ ESNASINDA ISI İLETİMİ VE ETKİLERİ

HEAT CONDUCTİON AND İTS EFFECTS DURİNG ENDODONTİC TREATMENT

Journal Name:

Publication Year:

Abstract (2. Language): 
The harmful effect of heat increase on the surrounding tissues of the root surface during endodontic treatment has been a subject of interest in dentistry. The conduction of heat to the pulp in the treatmentof vital pulp causes lose of vitality in pulp, whereas the conduction of heat occuring in the root canal to the cement causes damage in the root canal to the cement causes damage in the peripheral tissuses. Though dentin play an important part in the insulation of heat, there may not remain enough dentin thickness during the treatments. Using lagging may lessen the post operative sensitivity, it may also protect yhe pulp and peripheral tissues from the harmful heat increases.
Abstract (Original Language): 
Endodontik tedavi esnasında kök yüzeyinde oluşan ısı artışının çevre dokular üzerindeki zararlı etkisi diş hekimliğini ilgilendiren bir konu olmuştur. Vital pulpa tedavilerinde oluşan ısının pulpaya iletimi, pulpa canlılığının kaybına yol açarken, kök kanalında oluşan ısının semente iletilmesi de çevre dokularda hasara yol açmaktadır. Isı yalıtımda dentin önemli rol oynasa da, tedaviler esnasında yeterli dentin kalınlığı olmayabilir. Yalıtkan malzemelerin kullanılması post operatif hassasiyeti azaltacağı gibi pulpayı ve çevre dokuları bu zararlı ısı artışlarından koruyacaktır.
262-265

REFERENCES

References: 

1. Lin M, Xu F, Lu TJ, Bai BF. A review of heat transfer
in human tooth--experimental characterization and mathematical modeling. Dent Mater;26(6):501-13.
2. Jones CS, Billington RW, Pearson GJ. The effects of
lubrication on the temperature rise and surface finish of glass-ionomer cements. J Dent 2006;34(8):602-7.
3. Barclay CW, Spence D, Laird WR. Intra-oral
temperatures during function. J Oral Rehabil
2005;32(12):886-94.
4. Jones CS, Billington RW, Pearson GJ. The effects of
lubrication on the temperature rise and surface finish of amalgam and composite resin. J Dent
2007;35(1):36-42.
5. Barkhordar RA, Goodis HE, Watanabe L, Koumdjian
J. Evaluation of temperature rise on the outer surface of teeth during root canal obturation techniques. Quintessence Int 1990;21(7):585-8.
6. Grajower R, Kaufman E, Rajstein J. Temperature in
the pulp chamber during polishing of amalgam restorations. J Dent Res 1974;53(5):1189-95.
7. Behnia A, McDonald NJ. In vitro infrared
thermographic assessment of root surface temperatures generated by the thermafil plus
system. J Endod 2001;27(3):203-5.
8. Fors U, Jonasson E, Berquist A, Berg JO.
Measurements of the root surface temperature during thermo-mechanical root canal filling in vitro. Int Endod J 1985;18(3):199-202.
9. Çengel YA, Heat Transfer: A Practical Approach,
2nd ed. McGraw-Hill, New York, 2003.
10. Little PA, Wood DJ, Bubb NL, Maskill SA, Mair LH,
Youngson CC. Thermal conductivity through various restorative lining materials. J Dent
2005;33(7):585-91.
11. Panas AJ, Zmuda S, Terpilowski J, Preiskorn M. Investigation of the thermal diffusity of human tooth hard tissue. Int J Thermophys 2003;24:837-
47.
12. Civjan S, Barone JJ, Reinke PE, Selting WJ. Thermal properties of nonmetallic restorative materials. J Dent Res 1972;51(4):1030-7.
13. Figueiredo de Magalhaes M, Neto Ferreira RA, Grossi PA, de Andrade RM. Measurement of thermophysical properties of human dentin: effect of open porosity. J Dent 2008;36(8):588-94.
14. Ural Ç, Yenişey M, Külünk T, Külünk Ş, Şanal A. Geçici kron materyallerinin ısısal iletkenliği. Turkiye Klinikleri J Dental Sci 2011;17(2):156-61.
15. Hannig M, Bott B. In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dent Mater 1999;15(4):275-81.
16. Zach L, Cohen G. Pulp Response to Externally Applied Heat. Oral Surg Oral Med Oral Pathol 1965;19:515-30.
17. Weiner R. Teaching the use of liners, bases, and cements: a 10-year follow-up survey of North American Dental Schools. Dent Today 2006;25(6):74, 76, 78-9; quiz 79.
18. Tyas MJ. Pulp protection under restorations--do you need a liner? Aust Endod J 1998;24(3): 104-8.
19.Saitoh M, Masutani S, Kojima T, Saigoh M, Hirose H, Nishiyama M. Thermal properties of dental materials--cavity liner and pulp capping agent. Dent Mater J 2004;23(3):399-405.
20. Tibbetts VR, Schnell RJ, Swartz ML, Phillips RW.
Thermal diffusion through amalgam and cement base: comparison of in vitro and in vivo measurements. J Dent Res 1976;55(3):441-51.
21. Weiner R. Liners, bases, and cements in clinical dentistry. A review and update. Dent Today 2003;22(8):88-93.
264
Atatürk
Univ
. Diş Hek. Fak. Derg.
J Dent Fac Atatürk Uni
Cilt:21, Sayı: 3, Yıl: 2011, Sayfa: 262-265
UZUN, KELEŞ
22.Gutmann JL, Rakusin H, Powe R, Bowles WH. Evaluation of heat transfer during root canal obturation with thermoplasticized gutta-percha. Part II. In vivo response to heat levels generated. J Endod 1987;13(9):441-8.
23.Sweatman TL, Baumgartner JC, Sakaguchi RL. Radicular temperatures associated with thermoplasticized gutta-percha. J Endod
2001;27(8):512-5. 24.Jurcak JJ, Weller RN, Kulild JC, Donley DL. In vitro intracanal temperatures produced during warm lateral condensation of Gutta-percha. J Endod
1992;18(1):1-3.
25.Silver GK, Love RM, Purton DG. Comparison of two vertical condensation obturation techniques: Touch 'n Heat modified and System B. Int Endod J
1999;32(4):287-95.
26. Wolcott JF, Himel VT, Hicks ML. Thermafil
retreatment using a new "System B" technique or a solvent. J Endod 1999;25(11):761-4.
27. Ruddle CJ. Nonsurgical endodontic retreatment. In: Cohen S, Burns R, eds. Pathways of the Pulp. 8th ed. St. Louis: Mosby; 2002, pp. 875-929.
28. Lipski M, Wozniak K. In vitro infrared thermographic assessment of root surface temperature rises during thermafil retreatment using system B. J Endod 2003;29(6):413-5.
29. Guess GM. Predictable Therma-fil removal technique using the system-B heat source. J Endod
2004;30(1):61.
30. Lee FS, Van Cura JE, BeGole E. A comparison of root surface temperatures using different obturation heat sources. J Endod 1998;24(9):617-20.
31.Saunders EM. In vivo findings associated with heat generation during thermomechanical compaction of gutta-percha. 1. Temperature levels at the external surface of the root. Int Endod J
1990;23(5):263-7.
32. Hand RE, Huget EF, Tsakinis PJ. Effects of a warm gutta-percha technique on the lateral periodontium. Oral Surg Oral Med Oral Pathol 1976;42(3):395-401.
33. Lipski M. Root surface temperature rises in vitro during root canal obturation with thermoplasticized gutta-percha on a carrier or by injection. J Endod
2004;30(6):441-3.
34. Hardie EM. Heat transmission to the outer surface of the tooth during the thermo-mechanical compaction technique of root canal obturation. Int Endod J 1986;19(2):73-77.
35. Castelli WA, Caffesse RG, Pameijer CH, Diaz-Perez R, Farquhar J. Periodontium response to a root canal condensing device (Endotec). Oral Surg Oral
Med Oral Pathol 1991;71(3):333-7.
36.Saunders EM. In vivo findings associated with heat generation during thermomechanical compaction of gutta-percha. 2. Histological response to temperature elevation on the external surface of
the root. Int Endod J 1990;23(5):268-74.
37. Gutmann JL, Creel DC, Bowles WH. Evaluation of heat transfer during root canal obturation with thermoplasticized gutta-percha. Part I. In vitro heat levels during extrusion. J Endod
1987;13(8):378-83.
38. Teixeira FB, Teixeira EC, Thompson JY, Trope M. Fracture resistance of roots endodontically treated with a new resin filling material. J Am Dent Assoc
2004;135(5):646-52.

Thank you for copying data from http://www.arastirmax.com