Bell, A. (1978). The learning of process aspects of mathematics. In E. Cohors-Fresenborg (Ed.),
Proceedings of the 2nd of the PME (pp. 48–78), Osnabrück, West Germany.
Cuoco, A., Goldenberg, E. P. and Mark, J. (1996). Habits of mind: An organizing principle for mathematics
curricula. The Journal of Mathematical Behavior, 15(4), 375-402.
English, L. D., Lesh, R. and Fennewald, T. (2008). Future directions and perspectives for problem-
solving research and curriculum development. In M. Santillan (Ed.), Proceedings of the
11th ICME (pp. 6-13), Monterrey, Mexico.
Fraenkel, J. R. and Wallen, N. E. (1996). How to design and evaluate research in education (3th
Edition). New York: McGraw-Hill.
Harel, G. (2008). DNR perspective on mathematics curriculum and instruction, Part I: focus on
proving. ZDM, 40(3), 487-500.
Harel, G. and Lim, K. H. (2004). Mathematics teachers’ knowledge base: Preliminary results. In
M.J. Hoines & A.B. Fuglestad (Eds.), Proceedings of the 28th Conference of the ICME (Vol.
3(3), pp. 25 - 32). Bergen, Norway.
Harel, G. and Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A.
H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics education
III (pp. 234-283). Province, RI: American Mathematical Society.
İskenderoglu, T., Baki, A. and İskenderoglu, M. (2010). Proof schemes used by first grade of preservice
mathematics teachers about function topic. Procedia-Social and Behavioral Sciences,
9, 531-536.
Koichu, B. and Harel, G. (2007). Triadic interaction in clinical task-based interviews with mathematics
teachers. Educational Studies in Mathematics, 65, 349-365.
Lesh, R. and Harel, G. (2003). Problem solving, modeling, and local conceptual development.
Mathematical Thinking and Learning, 5(2-3), 157-189.
Lim, K. H. (2006). Students’ mental acts of anticipating in solving problems involving algebraic
inequalities and equations. Unpublished dissertation, San Diego State University.
Lim, K. H., Morera, O. and Tchoshanov, M. (2009). Assessing problem-solving dispositions: Likelihood-
to-act survey. In S. L. Swars, D. W. Stinson and S. Lemons-Smith (Eds.), Proceedings of
the 31th of the PME-NA (pp. 700-708). Atlanta: Georgia State University.
Lim, K. H. and Selden, A. (2009). Mathematical habits of mind. In S. L. Swars, D. W. Stinson and
S. Lemons-Smith (Eds.), Proceedings of the 31th of the PME-NA (pp. 1576-1583). Atlanta:
Georgia State University.
Pólya, G. (1945). How to solve it. Princeton. New Jersey: Princeton University.
Ramnarain, U. (2014). Empowering educationally disadvantaged mathematics students through a
strategies-based problem solving approach. The Australian Educational Researcher, 41(1), 43-
57.
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem-solving, metacognition and
sense making in mathematics. In D. Grouws (Ed.), Handbook of research on mathematics
teaching and learning: A Project of the NCTM (pp. 334–370). New York: Macmillan.
Strauss, A. L. and Corbin, J. M. (1998). Basics of qualitative research: Techniques and procedures
for developing grounded theory (2nd ed.). Thousand Oaks: Sage Publications.
868 Tangül KABAEL, Ayçe AKIN, Fatma KIZILTOPRAK, Onur TOPRAK...
Mart 2017 Cilt:25 No:2 Kastamonu Eğitim Dergisi
Şengül, S. and Güner, P. (2013). Investigation of preservice mathematics teachers’ proof
schemes according to DNR based instruction. International Journal of Social Science Studies,
6(2), 869878.
Viholainen, A. (2011). Critical features of formal and informal reasoning in the case of the concept
of derivative. In B. Ubuz (Ed.), Proceedings of 35th PME (pp. 305-312). Ankara, Turkey.
Watson, A. and Harel, G. (2013). The role of teachers’ knowledge of functions in their teaching: A
conceptual approach with illustrations from two cases. Canadian Journal of Science, Mathematics
and Technology Education, 13(2), 154-168.
Thank you for copying data from http://www.arastirmax.com