You are here

MATEMATİK ÖĞRETMEN ADAYLARININ SAYI ÖRÜNTÜLERİNE İLİŞKİN PEDAGOJİK ALAN BİLGİLERİNİN KONUYA ÖZEL STRATEJİLER BAĞLAMINDA İNCELENMESİ

EXAMINING PRE-SERVICE MATHEMATICS TEACHERS’ PEDAGOGICAL CONTENT KNOWLEDGE OF NUMBER PATTERNS WITH REGARD TO TOPIC-SPECIFIC STRATEGIES

Journal Name:

Publication Year:

Abstract (2. Language): 
The concept of “patterns” is now a part of the curriculum for grade 1 through grade 8 as a result of the recent reform in the elementary mathematics curriculum in Turkey. Since it is a newly-introduced concept in the curriculum, pre-service teachers do not have learning experiences of “patterns”. This brings the following question into consideration: Do pre-service teachers have adequate knowledge to teach “number patterns”? This study investigates six pre-service elementary teachers’ use of strategies to teach number patterns during micro-teaching lessons. Shulman’s (1986) notion of “pedagogical content knowledge” (PCK) and Magnusson et al.’s (1999) notion of “topic-specific strategies” component of PCK are used as the theoretical framework. The obtained data has indicated four categories of strategies: ‘examining the relationship between consecutive numbers’, ‘preparing tables of values, ‘constructing models’, ‘trial and error’. It has also been found out that pre-service teachers have had difficulties in finding the rules of “patterns” reported in the literature.
Abstract (Original Language): 
Matematik öğretim programlarında gerçekleştirilen reform sonrasında “örüntüler” konusu 1. sınıftan 8. sınıfa kadar her sınıf düzeyine eklenmiştir. Matematik öğretmen adaylarının örüntülerle ilgili kendi öğrenme deneyimlerinin bulunmaması örüntülerin öğretimine ilişkin bilgilerinin ne düzeyde olduğu sorusunu akla getirmektedir. Bu bağlamda araştırmada altı öğretmen adayının mikro-öğretim etkinlikleri gerçekleştirme sürecinde sayı örüntülerinin kuralını bulmayı öğretmede kullandıkları stratejiler incelenmektedir. İncelemede Shulman (1986) tarafından ortaya konan pedagojik alan bilgisi ve pedagojik alan bilgisinin Magnusson ve diğerleri (1999) tarafından tanımlanan konuya özel stratejiler bileşeni olguları kuramsal çerçeve olarak kullanılmıştır. Öğretmen adaylarının kullandıkları stratejiler; ‘ardışık sayılar arasındaki ilişkiyi inceleme’, ‘tablo yapma’, ‘modelleme yapma’, ‘deneme-yanılma yöntemini kullanma’ olarak kategorilere ayrılmıştır. Öğretmen adaylarının örüntülerle ilgili literatürde rapor edilen güçlüklere sahip olduğu görülmüştür.
FULL TEXT (PDF): 
125-149

REFERENCES

References: 

Baxter, J. A., & Lederman, N. G. (1999). Assessment and content measurement of
pedagogical content knowledge, In J. Gess-Newsome (Ed). Examining
pedagogical content knowledge: The construct and its implications for
science education (pp.147 –162). Hingham, MA, USA: Kluwer Academic
Publishers.
Ball, D. L., & Wilson, S. M. (1990). Knowing the subject and learning to teach it:
Examining assumptions about becoming a mathematics teacher. Paper
presented at the annual meeting of the American Educational Research
Association, Boston.
Cohen, L., Manion, L., & Morrison, K. (2002). Research methods in education.
London: Routledge.
Eisenhardt, K.M. (1989). Building theories from case study research. The Academy
of Management Review, 14(4), 532-550.
English, L., & Warren, E. (1998). Introducing the variable through pattern
exploration. Mathematics Teacher, 91(2), 166-170.
Hargreaves, M., Threlfall, J., Frobisher, L., & Shorrocks-Taylor, D. (1999).
Children's strategies with linear and quadratic sequences. In A. Orton (ed.),
Pattern in the teaching and learning of mathematics (pp. 67-83). London:
Cassell.
Lannin, J. (2002). Developing middle school students’ understanding of recursive
and explicit reasoning. Paper presented at the annual meeting of the
American Educational Research Association, New Orleans, Louisiana.
(ERIC Document Reproduction Service No. ED465529).
Lee, L. (1996). An initiation into algebraic culture through generalization activities.
In N. Bednarz, C. Kieran & L. Lee (eds.), Approaches to algebra:
S. Yeşildere, H. Akkoç. | 148
Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi 2010, 29 (1), 125-149
Perspectives for research and teaching (pp. 87-106). Dordrecht: Kluwer
Academic Publishers.
MacGregor, M., & Stacey, K. (1995). The effect of different approaches to algebra
on students‘ perceptions of functional relationships. Mathematics
Education Research Journal, 7(1), 69-85.
Magnusson, S., Borko, H., & Krajcik, J. (1999). Nature, sources, and development
of pedagogical content knowledge for science teaching. In Gess-Newsome,
J., & Lederman, N.G. (eds.), Examining pedagogical content knowledge
(pp. 95-132).Dordrecht: Kluwer Academic Publishers.
Mason, J., Graham, A., Pimm, D., & Gowar, N. (1985). Routes to/Roots of algebra.
Milton Keynes: Open University.
Milli Eğitim Bakanlığı [MEB]. (2009a). İlköğretim matematik dersi 1-5. sınıflar
öğretim programı, Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
Milli Eğitim Bakanlığı [MEB]. (2009b). İlköğretim matematik dersi 6-8. sınıflar
öğretim programı, Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
Olkun, S. (2008). Matematiksel yaratıcılığı geliştirme. 7. Matematik Sempozyumu
Panel Sunumu, İzmir.
Onslow, B., Beynon, C., & Geddis, A. (1992). Developing a teaching style: A
dilemma for student teachers. The Alberta Journal of Educational
Research, 4, 301-305.
Orton, A. (1999). Pattern and the approach to algebra. London: Cassell.
Orton, A., & Orton, J. (1999). Pattern and the approach to algebra. In A. Orton (ed.),
Pattern in the teaching and learning of mathematics (pp. 104-120).
London: Cassell.
Orton, J., Orton, A., & Roper, T. (1999). Pictorial and practical contexts and the
perception of pattern. In A. Orton (ed.), Pattern in the teaching and
learning of mathematics (pp. 121-136). London: Cassell.
Park, S., & Oliver, J.S. (2008). Revisiting the conceptualisation of pedagogical
content knowledge (PCK): PCK as a conceptual tool to understand teachers
as professionals. Research in Science Education, 38, 261-284.
Patton, M. Q. (1987). How to use qualitative methods in evaluation. Beverly Hills,
CA: Sage.
Presmeg, N. (1986). Visualization in high school mathematics. For the Learning of
Mathematics, 6(3), 42-46.
Shulman, L.S. (1986). Those who understand: Knowledge growth in teaching.
Educational Researcher, 15, 4-14.
Stacey, K. (1989). Finding and using patterns in linear generalising problems.
Educational Studies in Mathematics, 20, 147-164.
Uygur-Kabael, T., & Tanışlı, D. (2010). Cebirsel düşünme sürecinde örüntüden
fonksiyona öğretim. İlköğretim Online, 9(1), 213-228.
Matematik Öğretmen Adaylarının Sayı Örüntilerinin…| 149
Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi 2010, 29 (1), 125-149
Yıldırım, A., & Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri.
Ankara: Seçkin.
Yin, R.K. (1994). Case study research, design and methods (2nd edition). Newbury
Park: Sage.

Thank you for copying data from http://www.arastirmax.com