You are here

Uzun süreli gravite artışı uygulanan erişkin farelerde beyin morfolojileri

Cerebral morphology in adult mice following Long-term gravity increase

Journal Name:

Publication Year:

Abstract (2. Language): 
Increases in gravitational forces that result from acceleration and rotation or parabolic flight can create significant stress for living organisms. Indeed, some biological changes in living organisms have specifically arisen to combat the effects of increased gravitational forces. To determine the potential effects of rotation and long-term gravitational changes, we have investigated the structural changes in C57BL6 pl mice cerebral tissue under hypergravity conditions. Mice were subjected to long-term centrifugation under one or two gravities and compared with a non-treated control group. After 4 weeks of centrifugation, the mice were sacrificed and their brains were perfused through the ascending aorta with 10% formaldehyde. After removal of the brains, they were embeded in paraffin embedding and the cutting of serial coronal sections and systematic uniform random cerebral sections were analysed and The sterologic cortex and medulla volume estimations were performed. In addition, the immunohistochemical distribution of glial fibrillary acidic protein (GpAP) in cerebrum was determined to reveal any neurodegenerative effects of these different gravity conditions. Our results demonstrate that there were no long-term hypergravitational effects upon the cerebral volume, and that the cellular morphology of the cerebrum in all of the groups remained normal, and hence free from any degenerative changes. Under given conditions mice cerebral morphology has not been effected by hypergavity.
Abstract (Original Language): 
Gravitenin akselerasyon u ve rotasyonunda yada parabolik uçuş sırasında artması organizma içerisinde strese neden olur. Bununla beraber, organizma içerisindeki bazı biyolojik değişiklikler artmış graviteye karşı cevap olarak gelişir. Uzun süreli gravite değişikliklerin ve rotasyonun etkilerini belirlemek amacı için, C57BL6 p1 fare beyin dokusunda hipergravite ortamındaki yapısal değişiklikler incelendi. parelere bir veya iki gravite ortamında uzun-süreli sentrifüj uygulandı ve tedavi edilmeyen grup kontrol grubu olarak kabul edildi. Sentrifüjden 4 hafta sonra, fareler sakrifiye edildi ve beyinleri ascending aortadan %10 formalin solüsyonu ile perfüze edildi. Beyinler çıkarıldıktan sonra, parafine gömüldüler ve seri koronal kesitler ve sistemik üniform rastgele beyin kesitleri analiz edildi. Buna ilaveten, farklı gravite şartlarının nörodejeneratif etkilerini incelemek amacı için glial fibrillary asidik proteinin (GpAP) beyindeki immunohistokimyasal dağılımı incelendi. Sonuçlarımız göstermiştir ki, uzun süreli hipergravite beyin volumünde değişiklik yapmamaktadır ve tüm gruplarda beyinin hücresel morfolojisi normaldir ve dejeneratif değişiklikler gözlenmemiştir. parelerin beyin morfolojilerinin uygulanan bu şartlarda hipergravite ile etkilenmediği gözlenmiştir.
12-18

REFERENCES

References: 

1. Moore J, Duke J. Effect ofchronic centrifugation on mouse breeding pairs and their offspring. The Physiologist 1988;31:121-4.
2. Krasnov IB, Polyakov IV, Ilyina-Kakueva EI Drobyshev VI. Morphology and histochemistry of spinal cord and soleus muscle in rats grown under hypergravity. The Physiologist 1992;32:216-7.
3. Krasnov IB, Alekseev EI, Loginov VI, Burkovskaia TE Chel'naia NA. Repeated hypergravity morphologic investigations ofpituitary, thyroid, blood and bone marrow in rats. Aviakosm Ekolog Med 1998;32:31-40.
4. Serova LV. Adaptive capacities ofmammals in weightlessness and hypergravity. The Physiologist 1992;35:89-91.
5. Krasnov IB. Gravitational neuromorphology. Advances in Space Biology and Medicine 1994;4:85-110.
6. Son M., Shahed AR, Werchan PM, and Lee JC. c-fos and HSP70 gene expression in rat brains in high gravitation-induced cerebral ischemia. Neurosc Lett. 200 (1995) 81-84.
7. Werchan PM, Schadt JC, Fanton JW, Laughlin MH. Total and regional cerebral blood flow during recovery from G-LOC. Aviat and Space Environ Med 1996;67:751-8.
8. Guillaume A, Osmont D, Gaffie D, Sarron JC, Quandieu P. Effects ofperfusion on the mechanical behaviour ofthe brain exposed to hypergravity. J Biomech 1997;30:383-9.
9. D'Amelio F, Wu LC, Fox RA, Daunton NG, Corcoran ML, Polyakov I. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon
terminals contacting pyramidal cells in tha rat somatosensory cortex: a quantitative immunocytochemical image analysis. Journal of Neurosc Res 1998; 53:135-42.
10. Tripp LD, Chelette T, Savul S, Widman RA. Female exposure to high G: effects ofsimulated combat sorties on cerebral and arterial O2 saturation. Aviat and Space Environ Med 1998;69:869-74.
11. Gustave DDS, Gestreau C, Lacour M. Fos expression in the rat brain after exposure to gravito-inertial force changes. Brain Res 2000;861:333-44.
12. Kobayashi A, Miyamoto Y. In-flight cerebral oxygen status: continuous monitoring by near-infrared spectroscopy. Aviat and Space Environ Med 2000;71:177-83.
13. Siegel SM.Gravity as a biochemical determinant. 1979;17:147-60.
14. Cogoli A. The effect ofhypogravity and hypergravity on cells of the immune system. J Leukoc Biol. 1993 Sep;54(3):259-68. Review.
15. Vasques M, Lang C, Grindeland RE, Roy RR, Daunton N, Bigbee AJ et al. CE. Comparison ofhyper- and microgravity on rat muscle, organ weights and selected plasma constituents. Aviat Space Environ Med. 1998 Jun;69(6 Suppl):A2-8.
16. Holley DC, DeRoshia CW, Moran MM, Wade CE. Chronic centrifugation (hypergravity) disrupts the circadiansystemoftherat 2003 Sep;95(3):1266-78. Epub 2003 Jun 6.
17. Stevens L, Bozzo C, Nemirovskaya T, Montel V, Falempin M, Mounier Y. Contractile properties ofrat single muscle fibers and myosin and troponin isoform expressionafterhypergravity. 2003 Jun;94(6):2398-405. Epub 2003 Feb 7.
18. Guillaume AI, Osmont D, Gaffie D, Sarron JC, Quandieu P. Physiological implications ofmechanical effects of+Gz accelerations on brain structures. 2002 Mar;73(3):171-7; discussion 178.
19. Cai WM, Braun M, Sievers A. Displacement of statoliths in Chara rhizoids during horizontal rotation on clinostats. Shi Yen Sheng WU Hsueh Bao 1997; 30: 147- 155
20. Antonelli A, Santucci D, Amendola T, Triaca V, Corazzi G, Francia N et al. et al. Short-term hypergravity influences NGF and BDNF expression, and mast cell distribution in the lungs and heart ofadult male mice. 2002 Dec;9(2):29-38.
21. Yang CL, Jin YB, Yu H, Yi CR, Cheng J, Zhan H. Effects ofdietary supplementation ofcertain nutrients on maze performance and biochemical indices in mice after exposure to high +Gz. Space Med Med Eng (Beijing). 2003 Apr;16(2):79-82.
22a Borisova T, Himmelreich N. Effects ofthe inhibitors on glutamate uptake by nerve terminals after exposure of rats to centrifuge-induced hypergravity.
S.D.Ü. Tıp pak.
Derg
. 2007:14(4)/ 12-18
18
Varol,
Long-ter
m hypergravity effects on cerebral morphology
J Gravit Physiol. 2004 Jul;11(2):P37-8. 22b Borisova T, Krisanova N, Himmelreich N. Exposure of animals to artificial gravity conditions leads to the alteration ofthe glutamate release from rat cerebral hemispheres nerve terminals. Adv Space Res. 2004;33(8):1362-7.
23. Del Signore A, Mandillo S, Rizzo A, Di Mauro E, Mele A, Negri R et al. Hippocampal gene expression is modulated by hypergravity. Eur J Neurosci. 2004 Feb;19(3):667-77.
24. Eng LF. Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. Journal ofNeuroimmunology 1985;8:203-14.
25. Cavalieri, B. (1635).Geometrialndivisibilibus Continuorum. Bononi: Typis Clemetis Feronij. Reprinted as Geometria Degli Indivisibili. Torino: Unione Tipografico-Editorice Torinese, (1966).
26. Howard CV, Reed MG, Unbiased Stereology. BIOS Scientific Publishers, Oxford, UK, 1998, 39-53.
27. Nyengaard JR. 1999. Stereologic Methods and Their Application in Kidney
Research. JAm Soc Nephrol 10:1100-1123, 1999.
28. Miller JD, McMillen BA, McConnaughey MM, Williams HL, Fuller CA. Effects ofmicrogravity on brain neurotransmitter receptors. European Journal of Pharmacology 1989;161:165-71.
29. Goss JR, Morgan DG. Enhanced glial fibrillary acidic protein RNA response to fornix transection in aged mice. Journal ofNeurochemistry 1995;64:1351-60.
30. DeArmond SJ, Lee YL, Kretzschmar HA, Eng LF. Turnover ofglial filaments in mouse spinal cord. Journal of Neurochemistry 1986;47:1749-53.
31. Zhang WX, Zhan CL, Geneg XC, Yan GD, Lu X, Chu X. Cerebral blood flow velocity by transcranial doppler during a vertical-rotating table simulation on the push-pull effect. Aviation Space Environmental Medicine 2000; 71:485-488.
32. Vogt LH. Physiological effects ofsustained acceleration. Life Science Space Research 1976; 14:77-89.
33. Smith, 1973 SonM, ShahedAR, WerchanPM, Lee JC: C-fos and HSP70 gene expression in rat brains in high gravitation-induced cerebral ischemia. Neuroscience Letters 1995;200: 81-4.
34. Murakami DM, Fuller CA. The effect of2G on muse circadian rhytms. Journal of Gravity and Physiology 2000; 7:79-85.

Thank you for copying data from http://www.arastirmax.com