You are here

Salınımlı Basınca Maruz Tam Gelişmiş Kanal Akışının Benzerlik Transformasyonu İle Çözümü

SIMILARITY SOLUTION OF THE OSCILLATORY PRESSURE DRIVEN FULLY DEVELOPED FLOW IN A CHANNEL

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Two dimensional channel flow is considered under the action of periodic oscillatory pressure field. The flow is assumed to be fully developed laminar and incompressible, so that dimensionless form of the momentum equation has been solved analytically by using similarity transformation. Variations of the velocity profiles and skin friction coefficient over a cycle have been obtained together with behavior of the flow for various oscillation frequencies. Results were also compared to numerical values of the two dimensional laminar flow equations, based on the finite volume technique.
Abstract (Original Language): 
Bu çalışmada, periyodik olarak değişen basınca maruz iki boyutlu bir akış ele alınmıştır. Tam gelişmiş, laminer ve sıkıştırılamaz akış için yazılan momentum denkleminin benzerlik transformasyonu ile analitik çözümü yapılmıştır. Bir çevrim boyunca hız profillerinin ve sürtünme katsayısının değişimleri elde edilmiş, akışın davranışı değişik salınım frekansı için analiz edilmiştir. Ayrıca, elde edilen analitik çözüm sonuçları, iki boyutlu laminer akışın sonlu hacimler tekniğine dayanan sayısal çözüm sonuçları ile mukayese edilmiştir.
161-169

REFERENCES

References: 

1- Chamkha, A.J. (2000) Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular
pipes, Int. J. Heat and Fluid Flow, 21, 740-746.
2- Cooper, W.L., Nee, V.W. and Yang, K.T. (1994) An experimental investigation of convective heat transfer from
the heated floor of a rectangular duct to a low frequency large tidal displacement oscillatory flow, Int. J. Heat
Mass Transfer, 37(4), 581-592.3- Elad, D., Shochat, A. and Shiner, R.J. (1998) Computational model of oscillatory airflow in a bronchial bifurcation,
Respiration Physiology, 112(1), 95-111.
4- Faghri, A., Faghri, M. and Javdani, K. (1980) Effect of flow pulsation on laminar heat transfer between two parallel
plate, Warme-und Stoffübertragung, 13, 97-103.
5- Gerrard, J.H. (1971) The flow due to an oscillating piston in a cylindrical tube, J. Fluid Mech., 50(1), 97-106.
6- Gidaspow, D. (1986) Hydrodynamics of fluidization and heat transfer, Appl. Mech. Rev., 39, 1-23.
7- Hino, M., Sawamoto, M. and Takasu, S. (1976) Experiments on transition to turbulence in an oscillatory pipe
flow, J. Fluid Mech., 75(2), 193-207.
8- Karagoz, I (1996) Numerical investigation of periodic flow in a channel, Second National Conference on Computational
Mechanics, 4-6 September, Trabzon, Turkey.
9- Karagoz, I (2001) Variation of momentum and thermal boundary layers for oscillatory flows in a channel, Int.
Commun. Heat And Mass Transfer, 4(3), 163-169.
10- Kerczek, C. von and Davis, S.H. (1974) Linear stability theory of oscillatory Stokes layers, J. Fluid Mech., 62(4),
753-773.
11- Kim, S.Y., Kang, B.H. and Hyun, J.M., (1993) Heat transfer in the thermally developing region of a pulsating
channel flow, Int. J. Heat Mass Transfer, 36(17), 4257-4266.
12- Kurzweg, U.H. (1985) Enhanced heat conduction in oscillating viscous flows within parallel-plate channels, J.
Fluid Mech., 156, 291-300.
13- Li, P. and Yang, K.T. (2000) Mechanisms for heat transfer enhancement in zero-mean oscillatory flows in short
channels, Int. J. Heat Mass Transfer, 43, 3551-3566.
14- Liao, Q.D., Yang, K.T. and Nee, V.W., (1994) An analysis of conjucate heat transfer from a heated wall in a
channel with zero-mean oscillatory flow for small oscillatory flow Reynolds numbers, Int. J. Heat Mass Transfer,
37(1), 415-423.
15- Muto, T. and Nakane, K., (1980) Unsteady flow in circular tube, Bulletin of JSME, 23(186), 1990-2003.
16- Patankar, S.V, (1980) Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York.
17- Shemer, L., Wygnanski, I. and Kit, E. (1985) Pulsating flow in a pipe, J. Fluid Mech., 153, 313-337.
18- Schneck, D.J. and Ostrach, S. (1975) Pulsatile blood flow in a channel of small exponential divergence, J. Fluids
Engineering., 53, 353-360.
19- Uchida, S., (1956) The pulsating viscous flow superimposed on the steady laminar motion of incompressible fluid
in a circular pipe, Zeitschrift für angewandte Mathematik und physik, 7, 377-392.
20- Van Doormaal, J.P. and Raithby, G.D. (1984) Enhancements of the SIMPLE method for predicting incompressible
fluid flows, Numerical Heat Transfer, 17, 147-163.
21- Womersley, J.R. (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the
pressure gradient is known, J. Physiol., 127, 553-563.

Thank you for copying data from http://www.arastirmax.com