You are here

PERİYODİK DEĞİŞEN BİYOLOJİK AKIŞ ÖZELLİKLERİ VE BU AKIŞLARDA ETKİLİ OLAN BOYUTSUZ PARAMETRELER

Characteristics Of Periodic Biological Flows And Governing Dimensionless Numbers

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Main characteristics of a periodic flow which is a typical biological flow in branching pipes have been investigated in this study. After defining characteristic dimensions for this type of flow, governing equations have been put into dimensionless form under the assumptions of incompressible flow and rigid walls. Three different dimensionless numbers which dominate this flow have been obtained, in addition to geometrical ratios and branching angle. The variations of these parameters have been analyzed for the flow in a human respiratory system.
Abstract (Original Language): 
Periyodik olarak değişen tipik akışların bir örneği olarak biyolojik akışlar ele alınmış, dallanan bir boruda gerçekleşen böyle bir akışın temel özellikleri incelenmiştir. Akış sıkıştırılamaz ve cidarlar rijit kabul edilerek korunum denklemleri yazılmış, temel karakteristik büyüklükler yardımıyla denklemler boyutsuz forma sokulmuştur. Geometrik oranlara ve dallanma açılarına ilave olarak bu tip bir akışta etkili üç boyutsuz sayı elde edilmiştir. Bu boyutsuz sayıların solunum sistemindeki değişimi incelenmiştir.
71-78

REFERENCES

References: 

1. Balashazy, I., Hofmann, W., Heistracher, T. (1999) Computation of local enhancement factors for the
quantification of particle deposition patterns in airway bifurcations, J. Aerosol Sci., 30(2), 185-203.
2. Cooper, W.L., Nee, V.W. and Yang, K.T. (1994) An experimental investigation of convective heat
transfer from the heated floor of a rectangular duct to a low frequency, large tidal displacement
oscillatory flow, Int. J. Heat Mass Transfer, 37(4), 581-592.
3. Elad, D., Shochat, A. and Shiner, R.J. (1998) Computational model of oscillatory airflow in a bronchial
bifurcation, Respiration Physiology, 112(1), 95-111.
4. Faghri, A., Faghri, M. and Javdani, K. (1980) Effect of flow pulsation on laminar heat transfer between
two parallel plate, Warme-und Stoffübertragung, 13, 97-103.
5. Gerrard, J.H. (1971) The flow due to an oscillating piston in a cylindrical tube, J. Fluid Mech., 50(1),
97-106.
6. Haselton, F.R. and Scherer, P.W. (1982) Flow visualization of steady streaming in oscillatory flow
through a bifurcation tube, J. Fluid Mech., 123, 315-333.
7. Heistracher, T., Balashazy, I. and Hofmann, W. (1995) The significance of secondary flows for
localized particle deposition in bronchial airway bifurcations, J. Aerosol Sci., 26(1), 515-516.
8. Heyder, J. and Rudolph, G. (1984) Mathematical models of particle deposition in the human respiratory
tract. Journal of Aerosol Science, 15, 697-707.
9. Hino, M., Sawamoto, M. and Takasu, S. (1976) Experiments on transition to turbulence in an
oscillatory pipe flow, J. Fluid Mech., 75(2), 193-207.
10. Hughes, J.M., Hoppin, F.G. and Mead, J. (1972) Effects of lung inflation on bronchial length and
diameter in excised lungs, J. Appl. Physiol, 32, 23-35.
11. Karagoz, I (1993) Experimental investigation of periodic flow in branching pipes, Flow Measurement
and Instrumentation, 4(3), 163-169.
12. Karagoz, I (2001) Variation of momentum and thermal boundary layers for oscillatory flows in a
channel, Int. Commun. Heat And Mass Transfer, 4(3), 163-169.
13. Kerczek, C. von and Davis, S.H. (1974) Linear stability theory of oscillatory Stokes layers, J. Fluid
Mech., 62(4), 753-773.
14. Khodadadi, J.M., Vlachos, N.S., Liepsch, D. and Moravec, S. (1988) LDA measurements and
numerical prediction of pulsatile laminar flow in a plane 90-degree bifurcation, J. Biomechanical Eng.,
110, 129-136.
15. Kim, S.Y., Kang, B.H. and Hyun, J.M., (1993) Heat transfer in the thermally developing region of a
pulsating channel flow, Int. J. Heat Mass Transfer, 36(17), 4257-4266.
16. Koblinger, L. and Hofmann, W. (1990) Monte Carlo modeling of aerosol deposition in the human
lungs: Part I: Simulation of particle transport in a stochastic lung structure. Journal of Aerosol Science,
21,661-674.17. Kurzweg, U.H. (1985) Enhanced heat conduction in oscillating viscous flows within parallel-plate
channels, J. Fluid Mech., 156, 291-300.
18. Li, P. and Yang, K.T. (2000) Mechanisms for heat transfer enhancement in zero-mean oscillatory flows
in short channels, Int. J. Heat Mass Transfer, 43, 3551-3566.
19. Liao, Q.D., Yang, K.T. and Nee, V.W., (1994) An analysis of conjucate heat transfer from a heated wall
in a channel with zero-mean oscillatory flow for small oscillatory flow Reynolds numbers, Int. J. Heat
Mass Transfer, 37(1), 415-423.
20. O’Brien V., Ehrlich, L.W. and Friedman, M.H.(1976) Unsteady flow in a branch, J. Fluid Mechanics,
75(2):315-336.
21. Pedley, T.J., Schroter, R.C. and Sudlow, M.F. (1971) Flow and pressure drop in systems of repeatedly
branching tubes, J. Fluid Mech., 46(2), 365-383.
22. Shemer, L., Wygnanski, I. and Kit, E. (1985) Pulsating flow in a pipe, J. Fluid Mech., 153, 313-337.
23. Shcroter, R.C. and Sudlow, M.F. (1969) Flow patterns in models of the human bronchial airways,
Respir. Physiol., 7, 341-353.
24. Simone, A.F. and Ultman, J.S. (1982) Longitudinal mixing by the human larynx, Respir. Physiol., 49,
187-203.
25. Weibel, E. (1963) Morphology of the lung, Academic Press, New York.
26. Womersley, J.R. (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries
when the pressure gradient is known, J. Physiol., 127, 553-563.
27. Yang, W.H. and Yih, C.-S. (1977) Stability of time periodic flows in circular pipe, J. Fluid Mech.,
82(3), 497-505.

Thank you for copying data from http://www.arastirmax.com