You are here

İntraperitonal Diklorvos Uygulamasının Sıçanların (Rattus norvegicus) Bazı Dokularında Glukoz 6-Fosfat Dehidrogenaz ve Malat Dehidrogenaz Aktiviteleri Üzerine Etkisi

The Effect of Intraperitoneal Administration of Dichlorvos on The Activity Glucose 6-Phosphate Dehydrogenase and Malate Dehydrogenase in Some Tissues of Rats (Rattus norvegicus)

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, rats (Rattus norvegicus) were intraperitoneally injected with 4 mg kg -1 dose of dichlorvos (DDVP), a toxic agent widely used for agricultural purposes. Physiological saline was administered to each control group. Changes in the glucose 6-phosphate dehydrogenase (G6PD) and malate dehydrogenase (MDH) activities in the liver, kidney, brain and small intestine of male and female rats were investigated at 0, 2, 4, 8, 16, 32, 64 and 72 hours following injection. Enzyme activities were measured spectrophotometrically. Statistical analysis was performed using the SPSS program. As a result, dichlorvos which primarily inhibits acetylcholinesterase (AChE) activity in the nervous system causes significant (p<0.05) changes in both enzyme activities in studied tissues of male and female rats.
Abstract (Original Language): 
Bu çalışmada zirai amaçlar için yaygın bir şekilde kullanılan ve toksik bir ajan olan diklorvos’un (DDVP’nin), 4 mg kg -1 ’lık dozu, sıçanlara (Rattus norvegicus) intraperitonal yolla enjekte edilmiş, kontrol grubuna ise serum fizyolojik verilmiştir. Enjeksiyondan 0, 2, 4, 8, 16, 32, 64 ve 72 saat sonra erkek ve dişi sıçanların karaciğer, böbrek, beyin ve incebağırsak dokularında, glukoz 6-fosfat dehidrogenaz (G6PD) ve malat dehidrogenaz (MDH) enzim aktivitelerindeki değişimler spektrofotometrik yolla tayin edilmiştir. İstatistiksel analizler SPSS programı kullanılarak yapılmıştır. Sonuç olarak birincil toksik etkisini asetilkolinesteraz enzimini inhibe ederek sinir sistemi üzerine gösteren diklorvos, çalışılan tüm dokularda erkek ve dişi sıçanların her iki enzim aktivitesinde anlamlı (p<0.05) değişimlere neden olmuş- tur.
5-10

REFERENCES

References: 

1. Lai MW, Klein-Schwartz W, Rodgers GC, Abrams JY, Haber
DA, Bronstein AC, Wruk KM. 2005 Annual Report of the
American Association of Poison Control Centers’ National
Poisoning and Exposure Database. Clin Toxicol 2006; 44:
803–932.
2. Kupfer D. Effects of pesticides and related compounds on
steroidal metabolism and function. CRC Crit Rev Toxicol
1975; 4: 83-124.
3. Hodgson E, Levi PE. Pesticides: an important but under used
model for environmental health sciences. Environ Health
Persp 1996; 104: 97-106.
4. Peter JV, Cherian AM. Organic insecticides. Anaesth Intens
Care 2000; 28: 11-21.
5. Agency for Toxic Substances and Disease Registry (ATSDR).
Toxıcologıcal Profıle For Dıchlorvos. U.S. Goverment
Printing Office; 1997.
6. Delen N, Durmuşoğlu E, Güncan A, Güngör N, Turgut C,
Burçak A. Türkiye’de Pestisit Kullanımı, Kalıntı Ve Organizmalarda Duyarlılık Azalışı Sorunları. Türkiye Ziraat Mü-
hendisliği 6. Teknik Kongre; 2005.
7. Hathaway GJ, Proctor NH, Hughes JP, Fischman ML. Proctor
and Hughes' chemical hazards of the workplace. 3rd edition.
New York: Van Nostrand Reinhold; 1991.
8. Parmeggiani L. Encyclopedia of occupational health and
safety. Vol. 2. Geneva: International Labour Organization;
1983.
9. Casida JE, McBride L, Niedermeier RP. Metabolism of 2,2-
dichlorovinyl dimethyl phosphate in relation to residues in
milk and mammalian tissues. J Agr Food Chem 1962; 10(5):
370-7.
10. Hodgson E, Casida JE. Mammalian enzymes involved in the
degradation of 2,2-dichlorovinyl dimethylphosphate. J Agr
Food Chem 1962; 10(3): 208-14.
11. Bradway DE, Shafik TM, Lores EM. Comparison of
cholinesterase activity, residue levels, and urinary metabolite
excretion of rats exposed to organophosphorus pesticides. J
Agr Food Chem 1977; 25(6): 1353-8.
12. Gosselin RE, Smith RP, Hodge HC. Clinical toxicology of
commercial products. 5th edition. Baltimore, MD: Williams &
Wilkins; 1984.
13. Hayes AL, Wise RA, Weir FW. Assessment of occupational
exposure to organophosphates in pest control operators. Am
Ind Hyg Assoc J 1980; 41(8): 568-75.
14. Teichert KK, Szymczyk T, Consolo S, Ladinsky H. Effect of
Acute and Chronic Treatment with Dichlorvos on Rat Brain
Cholinergic Parameters. Toxicol Appl Pharm 1976; 35(1): 77-
81.
15. Seifert J. Toxicologic significance of the hyperglycemia
caused by organophosphorous insecticides. B Environ Contam
Tox 2001; 67: 463-9.
16. Bradford MM. A rapid and sensitive for the quantitation of
microgram quantitites of protein utilizing theprinciple of protein-dye binding. Anal Biochem 1976; 72: 248-54.
17. Boehringer Mannheim, GmbH. Biochemica information I,
1973. MDH: 124, G6PDH: 99.
18. Dere E, Bakır S, Atalay S. Malathion’un fare (Mus musculus)
karaciğer hekzokinaz, glukoz 6-fosfat dehidrogenaz, malat
dehidrogenaz ve laktat dehidrogenaz aktivitelerine etkisi. Turk
J Biol 1995; 19(1): 19-27.
19. Rao KSP, Rao KVR. The possible role of glucose-6-
phosphate dehydrogenase in the detoxification of methyl
parathion. Toxicol Lett 1987; 39: 211-4.
20. Dere E, Bakır S, Atalay A. Fare (Mus musculus) böbrek ve
incebağırsak hekzokinaz, glukoz 6-fosfat dehidrogenaz, malat
dehidrogenaz ve laktat dehidrogenaz aktivitelerine
malathion’un etkisi. C Ü Tıp Fak Derg 1995; 17(3): 167-74.
21. Husain K, Ansari RA. Effectiveness of certain drug in acute
malathion intoxication in rats. Ecotox Environ Safe 1990; 19:
271-5.
22. Güloglu C, Aldemir M, Orak M, Kara IH. Dichlorvos
poisoning after intramuscular injection: A Case Report And
Review Of The Literature. Am J Emerg Med 2004; 22: 328-30.
23. Rozenkranz HS, Rozenkranz S. Reaction of DNA with
phosphoric acid esters gasoline additive and insecticides. Cell
Mol Life Sci 1972; 28 (4): 386-7.
24. Romero-Navarro G, Lopez-Aceves T, Rojas-Ochoa A,
Fernandez Mejia C. Effect of dichlorvos on hepatic and
pancreatic glucokinase activity and gene expression, and on
insulin mRNA levels. Life Sci. 2006; 78 (9): 1015-20.
25. Rishi KK, Sunita G. Chromosome aberration test for the
insecticide, dichlorvos, on fish chromosomes. Mutat Res/Gen
Tox En 1995; 344: 1-4.
26. Li Q, Nagahara N, Takahashi H, Takeda K, Okumura K,
Minami M. Organophosphorus pesticides markedly inhibit the
activities of natural killer, cytotoxic T lymphocyte and
lymphokine-activated killer: a proposed inhibiting mechanism
via granzyme inhibition. Toxicology 2002; 172(3): 181-90.
27. Luty S, Latuzynska J, Halliop J, Tochman A, Obuchowska D,
Przylepa E, Korczak E, Bychawski E. Toxicity of dermally
absorbed dichlorvos in rats. Ann Agr Env Med 1998; 5: 57-64.
28. WHO. Environmental Health Criteria 79: Dichlorvos. World
Health Organization, Switzerland: Geneva, 1989.
29. Yamano T. Dissociation of DDVP-induced DNA strand
breaks from oxidative damage in isolated rat hepatocytes.
Toxicology 1996; 108 (1-2): 49-56.
30. Oral B, Guney M, Demirin H, Ozguner M, Giray SG, Take G,
Mungan T, Altuntas I. Endometrial damage and apoptosis in
rats induced by dichlorvos and ameliorating effect of
antioxidant vitamins E and C. Reprod Toxicol. 2006; 22(4):
783-90.
31. Parveen M, Kumar S. Effect of DDVP on the histology and
AChE kinetics of heart muscles of Rattus norvegicus. J
Environ Biol. 2001; (4): 257-61.
32. Oruç ÖE, Üner N. Combined effects of 2,4-D and
azinphosmethyl on antioxidant enzymes and lipid
peroxditation in liver of Oreochromis niloticus. Comp
Bıochem Phys C 2000; 127: 291-6. E. Dere, ark.
10
33. Reddy Y, Yellama K. Perturbations in carbohydrate
metabolism during cypermethrin toxicity in Oreochromis
mossambica. Biochem Int 1991; 23(4): 633–8.
34. Sharpe DM, Wilcock AR, Goldberg DM. Automated kinetic
spectrophotometric assays of enzyme activities of human
cerebrospinal fluid: Methods and reference values. Clınıcal
Chemıstry. 1973; 19 (2): 240-7.
35. Florez G, Cabeza A, Gonzalez JM, Garcia J, Ucar S. Changes
in serum and cerebrospinal fluid enzyme activity after head
injury. Acta Neurochir (Wien). 1976; 35(1-3): 3-13.

Thank you for copying data from http://www.arastirmax.com