You are here

İSPAT’IN ÖNEMİ VE İSPAT KONUSUNDAKİ ÖĞRETMEN YETERLİKLERİNİN İNCELENMESİ

THE IMPORTANCE OF PROOF AND THE ANALYSIS OF TEACHERS' PROFICIENCIES IN THIS DOMAIN

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.7827/TurkishStudies.11589
Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Proof is an effective way of doing mathematics and, it comprises high quality of reasoning. In addition to its major role in validating a mathematical argument proof supports the teaching-learning processes in many different ways. Above all, proof promotes critical and creative thinking. It serves as a means to explore relationships between mathematical notions and, thus, fosters the development of students’ conceptual understanding. Proof creates environments in which students synthesise their prior knowledge and use them through deductive chains of reasoning to discover a new one. However, previous studies indicated that both pre-service and in-service teachers posses a limited understanding of this notion. In this respect, most commonly cited limitation is that many teachers tend to accept specific examples and empirically-based arguments as a valid proof. The purpose of this paper is to review the literature on proof and proving. We illustrate logical principles of mathematical proof and explain salient aspects of proof techniques, such as proof by mathematical induction. Then, we provide a comprehensive review concerning the teachers’ conceptions as to the role of proof and their subject-matter understanding of this notion. The paper concludes with a brief summary that brings recommendations to improve teachers’ understanding of proof and proving.
Abstract (Original Language): 
İspatlar formel mantığın ve akıl yürütmenin etkili kullanıldığı uygulamalardır. Bu nedenle, verilen bir teoremin doğruluğunu kanıtlamanın ötesinde öğrenme-öğretme süreçlerini etkin kılma adına çok sayıda işlevinden bahsetmek mümkündür. En temelde ispatların eleştirel ve yaratıcı düşüncenin gelişimini desteklediği bilinmektedir. Bilgiler arası ilişkilerin açığa çıkarılmasındaki rolü nedeniyle öğrencilerin kavramsal bilgi edinmelerine imkân tanıdığı da bir gerçektir. İspat sürecinde geçmiş bilgiler sentezlenerek kullanılır ve yapılan çıkarsamalarla yeni bilgilere ulaşılır ki bu özelliğinden ötürü öğrencilere matematiksel bilgileri kendilerinin keşfetmeleri için uygun ortamlar sunduğu söylenebilir. Ayrıca, matematiksel dil ve terminolojinin aktif olarak kullanıldığı ispat süreçleri bireyler arasında kavram temelli tartışmaların ve fikir alış-verişlerinin yapılması için ortamlar sunar. Ancak, yapılan çalışmalar öğretmen adaylarının ve matematik öğretmenlerinin ispat bilgilerinin sınırlı olduğunu göstermektedir. Bu bağlamda kaydedilen en temel sıkıntı özel örnekler ve uygulama etkinlikleri üzerinden yapılan izahları ispat olarak kabul ettikleri hususudur. Ayrıca, ispat konusunda yaşanan sorunların farklı ispat yöntemlerinin mantıksal temelleriyle alakalı olduğu ve sayılar teorisi, cebir ve geometri gibi farklı alanları kapsadığı söylenebilir. Literatür taramasından oluşan bu yazıda genel olarak matematik öğretiminde ispatın rolü ve önemi konusu işlenmektedir. Bu çerçevede, ispatın matematiksel manasının yanı sıra okul matematiği kapsamında kullanılan farklı ispat yöntemlerinin mantıksal temelleri örnekler üzerinden açıklanmaktadır. Ayrıca, öğretmen adaylarının ve öğretmenlerin ispat algılarını ve bu alandaki bilgilerini inceleyen çalışmaların geniş bir özeti sunulmaktadır. Bu çalışmaların ortaya koyduğu bulgular tartışılmakta, ortaya çıkan sonuçlar ışığında öğretmen adaylarının ve öğretmenlerin ispat konusundaki yeterliklerini artırmak için getirilen önerilerle yazı sonlandırılmaktadır.
19
40

REFERENCES

References: 

Alibert, D. & Thomas, M. (1991). Research on mathematical proof. In D. Tall (Ed.), Advanced mathematical thinking (pp. 215-230). The Netherlands: Kluwer.
Barkai, R., Tsamir, P., Tirosh, D. & Dreyfus, T. (2002). Proving or refuting arithmetic claims: The case of elementary school teachers. In A. D. Cockburn & E. Nardi (Eds.), Proceedings of the Twenty-sixth Annual Meeting of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 57-64), Norwich, UK.
Baştürk, S. (2010). First-year secondary school mathematics students’ conceptions of mathematical proofs and proving. Educational Studies, 36(3), 283-298.
Bell, A. (1976). A study of pupils’ proof-explanations in mathematical situations. Educational Studies in Mathematics, 7, 23-40.
Coe, R. & Ruthven, K. (1994). Proof practices and constructs of advanced mathematics students. British Educational Research Journal, 20(1), 41-53.
İspat’ın Önemi ve İspat Konusundaki Öğretmen Yeterliklerinin İncelenmesi 39
Turkish Studies
International Periodical for the Languages, Literature and History of Turkish or Turkic
Volume 12/14
Davis, P. (1986). The nature of proof. In M. Carss (Ed.), Proceedings of the Fifth International Congress on Mathematical Education (pp.352-358). Adelaide, South Australia: Unesco.
De Villiers, M. (1999). Rethinking proof with the geometer’s sketchpad. Emeryville, CA: Key Curriculum Press.
Dickerson, D. S. (2008). High school mathematics teachers’ understandings of the purposes of mathematical proof. Unpublished doctoral dissertation, Syracuse University, Syracuse.
Gholamazad, S., Liljedahl, P. & Zazkis, R. (2004). What counts as proof? Investigation of pre-service elementary teachers’ evaluation of presented ‘proofs’. In D. E. McDougall & J. O. Ross (Eds.), Proceedings of the Twenty-sixth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 639-646), University of Toronto, Toronto.
Goetting, M. (1995). The college students’ understanding of mathematical proof. Unpublished doctoral dissertation, University of Maryland, Maryland.
Griffiths, P. A. (2000). Mathematics at the turn of the millennium. American Mathematical Monthly, 107, 1-14.
Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6-13.
Hanna, G. (1991). Mathematical proof. In D. Tall (Ed.), Advanced mathematical thinking (pp. 54-61). The Netherlands: Kluwer.
Hanna, G. (1995). Challenges to the importance of proof. For the Learning of Mathematics, 15(3), 42-49.
Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Mathematics, 44, 5-23.
Harel, G. & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 805-842). Charlotte, NC: Information Age.
Healy, L. & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396-428.
Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in Mathematics, 24, 389-399.
Jones, K. (1997). Student teachers’ conceptions of mathematical proof. Mathematics Education Review, 9, 21-32.
Knuth, E. (1999). The nature of secondary school mathematics teachers’ conceptions of proof. Unpublished doctoral dissertation, University of Colorado, Colorado.
Knuth, E. (2002a). Secondary school mathematics teachers’ conceptions of proof. Journal for Research in Mathematics Education, 33(5), 379-405.
Knuth, E. (2002b). Teachers’ conceptions of proof in the context of secondary school mathematics. Journal of Mathematics Teacher Education, 5, 61-88.
Ko, Y. Y. & Knuth, E. (2009). Undergraduate mathematics majors’ writing performance producing proofs and counterexamples about continuous functions. Journal of Mathematical Behavior, 28(1), 68-77.
Martin, G. & Harel, G. (1989). Proof frames of preservice elementary teachers. Journal for Research in Mathematics Education, 20, 41-51.
Mingus, T. & Grassl, R. (1999). Preservice teacher beliefs about proofs. School Science and Mathematics, 99(8), 438-444.
40 İbrahim BAYAZIT
Turkish Studies
International Periodical for the Languages, Literature and History of Turkish or Turkic
Volume 12/14
Morris, A. K. (2002). Mathematical reasoning: Adults’ ability to make the inductive-deductive distinction. Cognition and Instruction, 20(1), 79-118.
Movshovitz-Hadar, N. (1993). The false coin problem, mathematical induction and knowledge fragility. Journal of Mathematical Behavior, 12, 253-268.
National Council of Teacher of Mathematics (2000). Principles and standard for school mathematics. Reston, VA: National Council of Teacher of Mathematics.
PISA (2015). PISA-2015 sonuç raporu. Şubat 2017 tarihinde ‘https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf’ adresinden ulaşılmıştır.
Polya, G. (1973). How to solve it. United States of America: Princeton University Press.
Riley, K. J. (2003). An investigation of prospective secondary mathematics teachers’ conceptions of proof and refutations. Unpublished doctoral dissertation, Montana State University, Bozeman.
Schoenfeld, A. (1994). What do we know about mathematics curricula? Journal of Mathematical Behavior, 13(1), 55-80.
Stylianides, A. J. & Stylianides, G. J. (2009). Proof constructions and evaluations. Educational Studies in Mathematics, 72(2), 237-253.
Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3), 289-321.
Stylianides, G. J., Stylianides, A. J. & Philippou, G. N. (2004). Undergraduate students’ understanding of the contraposition equivalence rule in symbolic and verbal contexts. Educational Studies in Mathematics, 55, 133-162.
Stylianides, G. J., Stylianides, A. J. & Philippou, G. N. (2007). Preservice teachers’ knowledge of proof by mathematical induction. Journal of Mathematics Teacher Education, 10, 145-166.
TTKB (2013a). İlköğretim matematik dersi öğretim programı. Ankara: Milli Eğitim Bakanlığı Yayınları.
TTKB (2013b). Ortaöğretim matematik dersi öğretim programı. Ankara: Milli Eğitim Bakanlığı Yayınları.
Varghese, T. (2007). Student teachers’ conceptions of mathematical proof. Unpublished master thesis, University of Alberta, Alberta, Canada.
Weber, K. (2008). How mathematicians determine if an argument is a valid proof. Journal for Research in Mathematics Education, 39, 431-459.
Wheeler, D. (1990). Aspects of mathematical proof. Interchange, 21(1), 1-5.
Yackel, E. & Hanna, G. (2003). Reasoning and proof. In J. Kilpatrick, W. G. Martin & D. Schifter (Eds.), A research companion to principles and standards to school mathematics. Reston, VA: National Council of Teachers of Mathematics.

Thank you for copying data from http://www.arastirmax.com