You are here

Model Referans Uyarlanabilir Kontrole Dayalı Bulanık Kontrol Kullanımı ile DC Motor Sürücülerde Hız Kontrolünün Analiz ve Benzetimi

Analysis and Simulation of Speed Control in DC Motor Drive By Using Fuzzy Control Based on Model Reference Adaptive Control

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.17776/csj.15867
Abstract (2. Language): 
This paper presents the conventional performance of the model reference adaptive control (MRAC) and the model reference fuzzy adaptive control (MRFAC). The aims of this work are: a) increasing in correspondence of motor speed with defined reference model speed of the system, b) decreasing of noises under load changes and disturbances, and c) increasing of system stability. Thus, model reference adaptive control is applied instead of non-adaptive or conventional control. Also fuzzy controller is used in place of classic controllers like PI controller. The operation of non-adaptive control and the model reference of fuzzy and conventional adaptive control are studied for derive and adjustment of dc motor speed. Then they are compared with each other. The model reference and fuzzy controller are designed based on securing of the entire system stability. Simulation is done with constant and variable loads. The result obtained shows that the adaptive control is more favorite than non-adaptive control. Also fuzzy adaptive control is more satisfactory than conventional adaptive control. The simulations are carried out by using Matlab-Simulink.
Abstract (Original Language): 
Bu makalede, model referans uyarlamalı kontrol (MRAC) ve model referans bulanık uyarlanabilir kontrol (MRFAC) için geleneksel performans sunulmuştur. Çalışmanın amaçları: a) sistemin tanımlı referans model hızı ile motor hızının uyumunun arttırılması, b) yükleme değişimi ve bozuklukları durumunda gürültünün azaltılması ve c) sistemin kararlılığının arttırılması. Böylece, model referans uyarlamalı kontrol yerine uyarlanabilir olmayan veya geleneksel kontrol uygulanır. Ayrıca bulanık kontrolör, PI kontrolör gibi klasik kontrolörlerin yerine kullanılmıştır. Uyarlanır olmayan kontrolün işletimi ve model referans bulanık kontrol ve geleneksel uyarlanabilir kontrol, dc motor hızının türetilmesi ve ayarlanmasında çalışılmıştır. Ardından bunlar birbirleriyle karşılaştırılmıştır. Model referans ve bulanık kontrolör, tüm sistemin kararlılık güvencesine dayanarak tasarlanmıştır. Simülasyon, sabit ve değişken yükler ile yapılmıştır. Elde edilen sonuçlara göre, uyarlanabilir kontrol, uyarlanabilir olmayana göre daha gözdedir. Ayrıca bulanık uyarlanabilir kontrol geleneksel uyarlanabilir kontrolden daha tatmin edicidir. Simülasyonlar, Matlab-Simulink kullanılarak yapılmıştır.
197
211

REFERENCES

References: 

1. R. Saidur, "A review on electrical motors energy use and energy savings", Renewable and
Sustainable Energy Reviews, Vol. 14, pp. 877–898, 2010.
2. W.J. Lee, R. Kenarangui, "Energy management for motors, systems, and electrical equipment",
IEEE Trans. On Industry Applications, Vol. 38, No. 2, pp. 602-607, March/April 2002.
3. M.A. Sheta1, V. Agarwa, P.S.V. Nataraj, "A new energy optimal control scheme for a separately
excited DC motor based incremental motion drive", International Journal of Automation and
Computing, Vol. 6, No. 3, pp. 267-276, Aug. 2009.
4. R.H. Issa, "Separately excited DC motor optimal efficiency controller", International Journal of
Engineering and Innovative Technology, Vol. 3, No. 1, pp. 533-539, July 2013.
5. T. Kara, I. Eker, "Nonlinear modeling and identification of a DC motor for bidirectional operation
with real time experiments", Energy Conversion and Management, Vol. 45, No. 7-8, pp. 1087-1106,
May 2004.
6. M. Pant, R. Thangaraj, V.P. Singh, "Efficiency optimization of electric motors: A comparative study
of stochastic algorithms ", World Journal of Modeling and Simulation, Vol. 4, No. 2, pp. 140-148,
2008.
7. Gh. Shahgholian, J. Faiz, N. Sedri, P. Shafaghi, M. Mahdavian, "Design and experimental analysis
of a high speed two-phase induction motor drive for weaver machines applications", International
Review of Electrical Engineering,Vol. 5, No. 2, pp. 454-461, April 2010.
0 1 2 3 4 5 6 7 8
0
500
1000
1500
Time(sec)
wd,wm(rpm)
Analysis and Simulation of Speed Control in DC Motor
210
8. T. Ishikawa, K. Nakayama, "Topology optimization of rotor structure in brushless DC motor with
concentrated windings using genetic algorithm combined with cluster of material", IEEE Trans. on
Magnetic, Vol. 48, No. 2, pp. 899-902, Feb. 2012.
9. W.P. Aung, "Analysis on modeling and Simulink of DC motor and its driving system used for
wheeled mobile robot", World Academy of Science, Engineering and Technology, Vol. 32, pp. 299-
306, 2007.
10. K. Premkumar, B.V. Manikandan, "Fuzzy PID supervised online ANFIS based speed controller for
brushless dc motor", Neurocomputing, Vol. 157, pp. 76-90, June 2015.
11. Gh. Shahgholian, P. Shafaghi, "State space modeling and eigenvalue analysis of the permanent
magnet DC motor drive system", IEEE/ICECT, pp. 63-67, Kuala Lumpur, Malaysia, May 2010.
12. G.L. Plett, "Adaptive inverse control of linear and nonlinear systems using dynamic neural
networks", IEEE Trans. on Neural Network, Vol. 14, No. 2, pp. 360-373, 2003.
13. M.G. Guerreiro, D., Foito, A. Cordeiro, "A sensorless PMDC motor speed controller with a logical
overcurrent protection", Journal of Power Electronics, Vol. 13, No. 3, pp. 381-389, May 2013.
14. C.S. Gohiya, S.S. Sadistap, S.A. Akbar, B.A., Botre, "Design and development of digital PID
controller for DC motor drive system using embedded platform for mobile robot", Proceeding of
the IEEE/IACC, pp. 52-55, 2013.
15. B. Seung-Min, K. Tae-Yong.K, An adaptive PID learning control of DC motors, Proceeding of the
IEEE/ICSMC, Vol. 3, pp. 2877-2882, Orlando, FL, Oct. 1997.
16. P. Thepsatorn, A. Numsomran, V. Tipsuwanporn, T. Teanthong., "DC motor speed control using
fuzzy logic based on lab VIEW", Proceeding of the IEEE/SICE-ICAES, pp. 3617-3620, Busan, Oct.
2006.
17. H. Yang, D. Dong, Y. Ren, J. Xu, S. Yang, "Study on fuzzy PID control in double closed-loop dc
speed regulation system", Proceeding of the IEEE/ICMTMA, Vol. 3, pp. 465-469, Shangshai, Jan.
2011.
18. O. Montiel, R. Sepulveda, P. Melin, O. Castillo, M.A. Porta, I.M. Meza, "Performance of a simple
tuned fuzzy controller and a PID controller on a DC motor", Proceeding of the IEEE/FOCI, pp. 531-
537, Honolulu, HI, April 2007.
19. R.U. Parrazales, M.A.P. Tapia, A. De Luca, "A fuzzy logic controller applied to a d.c. motor",
Proceeding of the IEEE/MWSCAS, Vol. 2, pp. 653-656, Rio de Janeiro, Aug. 1995.
20. J.A. Altayef, Zh. Qun-xiong, "Real-time DC motor position control by (FPID) controllers and design
(FLC) using lab view software simulation", Proceeding of the IEEE/ICCAE, Vol. 2, pp. 417-420,
Feb. 2010.
21. Y. Khemissi, A. Abdulwahab, "Control the robot movement by fuzzy logic controller, Proceeding
of the IEEE/ICCEA, Vol. 1, pp. 37-41, March 2010.
22. Y. Tipsuwan, J. Srisabye, "An experimental study of network-based DC motor speed control using
SANFIS", Proceeding of the IEEE/IECON, pp. 426-432, Taipei, Taiwan, Nov. 2007.
23. Rubaai, A., Kotaru, R., (2000), "Online identification and control of a DC motor using learning
adaptation of neural networks", IEEE Trans. on Industrial Applications, Vol. 36, No. 3, pp. 935-
942.
24. Ambesange, S.V., Kamble, S.Y., More, D.S., (2013), "Application of sliding mode control for the
speed control of DC motor drives", Proceeding of the IEEE/CCA, pp. 832-836.
25. A.A.A. El-Gammal, A.A. El-Samahy, "A modified design of PID controller for dc motor drives
using particle swarm optimization PSO", Proceeding of the IEEE/POWERENG, pp. 419-424,
Lisbon, Portugal, March 2009.
26. A. Cozma, D. Pitica, "Artificial neural network and PID based control system for dc motor drives",
Proceeding of the IEEE/OPTIM, pp. 161-166, May 2008.
SHAHGHOLIAN, MAGHSOODI
211
27. G. Huang, S. Lee, "PC-based PID speed control in DC motor", Proceeding of the IEEE/ICALIP, pp.
400-407, Shanghai, July 2008.
28. H. Li, M.Y. Chow, Z. Sun, "EDA- based speed control of a networked DC motor system with time
delays and packet losses", IEEE Trans. on Industrial Electronics, Vol.56, No.5, pp.1727-1735, May
2009.
29. M. Koksal, F. Yenici, A.N. Asya, "Position control of a permanent magnet DC motor by model
reference adaptive control", Proceeding of the IEEE/ISIE, pp. 112-117, June 2007.
30. Y. Liu, J. Zhao, M. Xia, H. Luo, "Model reference adaptive control-based speed control of brushless
dc motors with low-resolution hall-effect sensors", IEEE Trans. on Power Electronics, Vol. 29, No.
3, pp. 1514-1522, May 2013.
31. A. Karami Mohammadi, M. Saee, "Variable structure model reference adaptive control for vehicle
steering system", Wor. Aca. of Sci., Eng. and Tec., Vol. 45, pp. 107-111, 2008.
32. M. Bernardo, U. MontanaroS. Santini, "Hybrid model reference adaptive control of piecewise affine
systems", IEEE Trans. on Aut. Con., Vol. 58, No. 2, pp. 304-316, Feb. 2013.
33. J.Y.M. Cheung, K.W.E. Cheng, A.S. Kamal, "Motor speed control by using a fuzzy logic model
reference adaptive controller", Proceeding of the IEEE/PEVSD, pp. 430-435, Sep. 1996.
34. D. Singh, N. Singh, B. Singh, S. Prakash, "Optimal gain tuning of PI current controller with
parameter uncertainty in DC motor drive for speed control", Proceeding of the IEEE/SCES, pp. 1-
6, Allahabad, April 2013.
35. A. Suresh kumar, M. Subba Rao, Y.S.K. Babu, "Model reference linear adaptive control of dc motor
using fuzzy controller", Proceeding of the IEEE/TECON, pp.1-5, Hyderabad, Nov. 2008.
36. R. Guo, J. Chen, X. Hao. "Position servo control of a DC electromotor using a hybrid method based
on model reference adaptive control (MRAC)", Proceeding of the IEEE/CMCE, Vol. 4, pp. 534-
537, Aug. 2010.
37. F. Betin, D. Pinchon, G.A. Capolino, "A time-varying sliding surface for robust position control of
a DC motor drive", IEEE Trans. on Ind. Elec., Vol. 49, No. 3, pp. 462-473, April 2002.
38. A.A.E. Samahy, "Speed control of DC motor using adaptive variable structure control", Proceeding
of the IEEE/PESC, Vol.3, pp. 1118– 1123, 2000.

Thank you for copying data from http://www.arastirmax.com