Buradasınız

First-principles study of structural, elastic and electronic properties of NdTe2 and TlNdTe2

Journal Name:

Publication Year:

Abstract (Original Language): 
The first-principles calculations of structural, elastic and electronic properties of NdTe2 (C38) and TlNdTe2 (L21) compounds are investigated using the methods of density functional theory within the generalized gradient approximation (GGA) based on exchange-correlation energy optimization. We have calculated the lattice constants, bulk modulus and its pressure derivative agrees with the available experimental data. We have investigated the elastic properties to obtain further information. Second-order elastic constants, Zener anisotropy factor, Poisson’s ratio, Young’s modulus, isotropic shear modulus, B/G ratios and Kleinman parameter are calculated in this study. Electronic band structures are investigated using the total and partial density of states, charge distribution and electronic localization function.
12
28

REFERENCES

References: 

[1] C.G. Duan, R.F. Sabirianov, W.N. Mei, P.A. Dowben, S.S. Jaswal, E.Y. Tsymbal.
Electronic, magnetic and transport properties of rare-earth monopnictides. J. Phys.
Condens. Matter., 2007, 19: 315220.
[2] S. Lebegue, S. Svane, M. Katsnelson, I. Lichenstein, O. Eriksson. Multiplet effects
in the electronic structure of light rare-earth metals. Physical Rev. B, 2006, 74: 045114.
[3] G. Pagare, P.S. Sanyal, P.K. Jha. High-pressure behaviour and elastic properties of
heavy rare-earth Gd monopnictides. Journal of Alloys and Compounds, 2005, 398: 16-
20.
[4] C.J.M. Rooymans. Structural Investigations on Some Oxides and Other
Chalcogenides at Normal and Very High Pressures (Philips Research Reports), Philips,
Eindhoven, 1968.
[5] A. Chatterjee, A.K. Singh, A. Jayaraman. Pressure-Induced Electronic Collapse and
Structural Changes in Rare-Earth Monochalcogenides, Phys. Rev. B, 1972, 6: 2285.
[6] A. Jayaraman, A.K. Singh, A. Chatterjee, S. Usha Devi. Pressure-volume
relationship and pressure-induced electronic and structural transformations in Eu and
Yb monochalcogenides. Phys. Rev. B, 1974, 9: 2513.
[7] V.V. Shchennikov, N.N. Stepanov, I.A. Smirnov, A.V. Golubkov. Thermoelectric
power and resistivity of samarium monochalcogenides at ultrahigh pressure. Sov. Phys.-
Solid State, 1988, 30: 1785.
[8] U. Benedict, W.B. Holzapfel, in: K.A. Gschneidner, L. Eyring, G.H. Lander, G.R.
Choppin (Eds.). Handbook on the Physics and Chemistry of Rare Earths, North-
Holland, Amsterdam, 1993.
[9] V.A. Sidorov, N.N. Stepanov, L.G. Khvostantsev, O.B. Tsiok, A.V. Golubkov, V.S.
Oskotski, I.A. Smirnov. Intermediate valency state of samarium chalcogenides under
high pressure. Semicond. Sci. Technol., 1989, 4: 286.
[10] O.B. Tsiok, V.A. Sidorov, V.V. Bredikhin, L.G. Khvostantsev. Compressibility
and electronic transport properties of SmSe and SmTe at the pressure induced valence
transition. Solid State Commun., 1991, 79: 227.
[11] T. Le. Bihan, S. Darracq, S. Heathman, U. Benedict, K. Mattenberger, O. Vogt.
Phase transformation of the monochalcogenides SmX (X : S, Se, Te) under high
pressure. J. Alloy. Compd., 1995, 226: 143.
Y. MOGULKOC, Y.O. CIFTCI, M. KABAK, K. COLAKOGLU
26
[12] J.M. Leger, R. Epain, J. Loriers, D. Ravot, J. Rossat-Mignod. Anomalous behavior
of CeTe under high pressures. Phys. Rev. B, 1983, 28: 7125.
[13] J.M. Leger, D. Ravot, J. Rossat-Mignod. Volume behaviour of CeSb and LaSb up
to 25 GPa. J. Phys. C Solid State Phys., 1984, 17: 4935.
[14] N. Mori, Y. Okayama, H. Takahashi, Y. Haga, T. Suzuki. Neutron scattering
investigations of magnetic ordering and crystal field excitations in CeAs under high
pressure. Physica B, 1993, 444: 186-188.
[15] U. Benedict. Comparative aspects of the high-pressure behaviour of lanthanide and
actinide compounds. J. Alloy. Compd., 1995, 223: 216-225.
[16] I. Shirotani, K. Yamanashi, J. Hayashi, Y. Tanaka, N. Ishimatsu, O. Shimomura, T.
Kikegawa. Phase transitions of LnAs (Ln = Pr, Nd, Sm, Gd, Dy and Ho) with NaCltype
structure at high pressures. J. Phys. Condens. Matter, 2001, 13: 1939.
[17] I. Shirotani, K. Yamanashi, J. Hayashi, N. Ishimatsu, O. Shimomura, T. Kikegawa.
Pressure-induced phase transitions of lanthanide monoarsenides LaAs and LuAs with a
NaCl-type structure. Solid State Commun., 2003, 127: 573.
[18] A. Svane, G. Santi, Z. Szotek, W.M. Temmerman, P. Strange, M. Horne, G.
Vaitheeswaran, V. Kanchana, L. Petit, H. Winter. Electronic structure of Sm and Eu
chalcogenides. Phys. Status Solidi B, 2004, 241: 3185.
[19] D. Singh, M. Rajagopalan, A.K. Bandyopadhyay. Band structure calculation and
structural stability of high pressure phases of EuSe. Solid State Commun., 1999, 112:
39.
[20] D. Singh, M. Rajagopalan, M. Husain, A.K. Bandyopadhyay. High pressure band
structures and structural stability of EuS. Solid State Commun., 2000, 115: 323.
[21] D. Singh, V. Srivastava, M. Rajagopalan, M. Husain, A.K. Bandyopadhyay. Highpressure
band structure and structural stability of EuTe. Phys. Rev. B, 2001, 64: 115110.
[22] P. Larson, Walter R. L. Lambrecht. Electronic structure of rare-earth nitrides using
the LSDA+U approach: Importance of allowing 4f orbitals to break the cubic crystal
symmetry. Phys. Rev. B, 2007, 75: 045114.
[23] C.G. Duan, R. F. Sabiryanov, Jianjun Liu, W. N. Mei, P. A. Dowben and J. R.
Hardy. Strain Induced Half-Metal to Semiconductor Transition in GdN. Phys. Rev.
Lett., 2005, 94: 237201.
[24] V.N. Antonov, B.N. Harmon, A.N. Yaresko. Electronic structure of mixed-valence
semiconductors in the LSDA+U Sm monochalcogenides approximation. Phys. Rev. B,
2002, 66: 165208.
First-principles study of structural, elastic and electronic properties
27
[25] G. Vaitheeswaran, V. Kanchana, M. Rajagopalan. Theoretical study of LaP and
LaAs at high pressures. J. Alloy. Compd., 2002, 336: 46.
[26] P. Pandit, V. Srivastava, M. Rajagopalan, S.P. Sanyal. Pressure-induced electronic
and structural phase transformation properties in half-metallic PmN: A first-principles
approach. Physica B, 2008, 403: 4333.
[27] Y. Wenlong, Y. Shihong, Y. Dunbo, L. Kuoshe, L. Hongwei, L. Yang, Y.
Hongchuan. Influence of gadolinium on microstructure and magnetic properties of
sintered NdGdFeB magnets. Journal of Rare Earths, 2012, 30: 133-136.
[28] Cristiano C. Bastos, Ricardo O. Freire, Gerd B. Rocha, Alfredo M. Simas. Sparkle
model for AM1 calculation of neodymium(III) coordination compounds. J.
Photochemistry and Photobiology A: Chemistry, 2006, 177: 225–237.
[29] Th. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke. Band structure of
MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio
calculations. Phys. Rev. B, 2001, 64: 235305.
[30] Y. Mogulkoc, Y.O. Ciftci, K. Colakoglu. Structural, elastic, electronic and
thermodynamic properties of Nd2Te via first principle calculations. J. Optoelectron.
Adv. Mater., 2011, 13: 946-95.
[31] Klaus Stöwe. Crystal structure, magnetic properties and band gap measurements of
NdTe2-x (x=0.11(1)). Zeitschrift für Kristallographie, 2001, 216: 0044-2968.
[32] E.M. Godzhaev, K.D. Orudzhev, V.A. Mamedov and F.S. Mirzoeva. TlNdSe2 –
TlInSe2 and TlInTe2 –TlNdTe2 Systems. Izv. Akad. Nauk SSSR, Neorg. Mater., 1981,
17: 1388–1391.
[33] P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Phys. Rev., 1964, 136: 864.
[34] W. Kohn, L.J. Sham. Self-Consistent Equations Including Exchange and
Correlation Effects, Phys. Rev., 1965, 140: 1133.
[35] A.D. Becke, K.E. Edgecombe. A simple measure of electron localization in atomic
and molecular systems. J. Chem. Phys., 1990, 92: 5397.
[36] G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54: 11169.
[37] G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Compt. Mater. Sci., 1996, 6:
15.
[38] P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 1994, 50: 17953.
[39] G. Kresse, J. Joubert. From ultrasoft pseudopotentials to the projector augmentedwave
method. Phys. Rev. B, 1999, 59: 1758.
Y. MOGULKOC, Y.O. CIFTCI, M. KABAK, K. COLAKOGLU
28
[40] J. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made
Simple. Phys. Rev. Lett., 1996, 77: 3865.
[41] F.D. Murnaghan. The Compressibility of Media under Extreme Pressures. Proc.
Natl. Acad. Sci. USA, 1944, 30: 5390.
[42] J. Mehl. Pressure dependence of the elastic moduli in aluminum-rich Al-Li
compounds. Phys. Rev. B, 1993, 47: 2493.
[43] O.H. Nielsen, R.M. Martin. First-Principles Calculation of Stress. Phys. Rev. Lett.,
1983, 50: 697.
[44] Y. Le Page, P. Saxe. Symmetry-general least-squares extraction of elastic data for
strained materials from ab initio calculations of stres. Phys. Rev. B, 2002, 65: 104104.
[45] S.Q. Wang, H.Q. Ye. First-principles study on elastic properties and phase
stability of III–V compounds. Phys. Status Solidi B, 2003, 240: 45.
[46] M. Born and K. Huang. Dynamical Theory of Crystal Lattices, Clarendon, Oxford,
1956.
[47] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, and P.C. Schmidt. Ab-initio
calculation of the elastic constants and thermal expansion coefficients of Laves phases.
Intermetallics, 2003, 11: 23.
[48] W.A. Harrison, Electronic Structure and Properties of Solids, New York: Dover,
1989.
[49] L. De Santis and R. Resta. Electron localization at metal surfaces. Surf. Sci., 2000,
450: 126.
[50] G. Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B,
1993, 47: 558–561.
[51] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total energy
calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54:11169.
[51] R.F.W. Bader, S. Johnson, T.H. Tang, P.L.A. Popelier. The Electron Pair. J. Phys.
Chem., 1996, 100: 15398-15415.
[52] A. Kirfel, T. Lippmann, P. Blaha, K. Schwarz, D.F. Cox, K.M. Rosso, G.V. Gibbs.
Electron density distribution and bond critical point properties for forsterite,
Mg(2)SiO(4), determined with synchrotron single crystal X-ray diffraction data. Phys.
Chem. Min., 2005, 32: 301-313.
[53] G.V. Gibbs, D.F. Cox, N.L. Ross, T.D. Crawford, J.B. Burt, K.M. Rosso.
Experimental and theoretical bond critical point properties for model electron density
distributions for earth materials. Phys. Chem. Min., 2005, 32: 208-221.

Thank you for copying data from http://www.arastirmax.com