Buradasınız

İLKOKUL MATEMATİĞİNDE ÇOKLU-DUYUMA DAYALI ÖĞRETME TEKNİKLERİNİN ÖNEMİNİN EVRİMİ: KURAM VE UYGULAMA

THE EVOLUTION OF THE IMPORTANCE OF MULTI-SENSORY TEACHING TECHNIQUES IN ELEMENTARY MATHEMATICS: THEORY AND PRACTICE

Journal Name:

Publication Year:

Abstract (2. Language): 
In recent years, partially because of federal legislation, there have been increases in demand for accountability in all educational venues. Performance in elementary mathematics is no exception. In this paper we review the relevant parts of the learning theories of Piaget, Bruner, and Vygotsky and address the difficulties teachers may face when introducing mathematical concepts. The review of theories, along with a review of previously published empirical studies, supports the use of multi-sensory teaching techniques in the elementary, specifically kindergarten through third grade, classrooms. Since students (both regular and special needs) develop and learn at different rates, it is unlikely that all will be developmentally prepared to assimilate new mathematical concepts at the same time. Multi-sensory techniques allow many students, by assimilation, to grasp elusive concepts and keep up with their peers.
Abstract (Original Language): 
Kısmen yasal gelismeler nedeniyle, bütün egitim alanlarında performansla ilgili sorumluluk alma egilimi giderek yaygınlasmaktadır. &lkokul düzeyinde matematik performansı da bu konuda bir istisna degildir. Bu çalısmada Piaget, Bruner ve Vygotsky’nin kuramlarının ilgili bölümlerini ve ögrencileri matematik kavramlarıyla tanıstırırken ögretmenlerin karsılasabilecekleri zorlukları gözden geçirdik. Yayınlanmıs olan kuramsal ve deneysel çalısmalar, özellikle anaokulu seviyesinden üçüncü sınıf sonuna kadarki dönemde, çoklu-duyuma (multi-sensory) dayalı ögretim tekniklerinin kullanımını desteklemektedir. Normal ve engelli çocukların gelisim ve ögrenme hızları farklılık gösterdiginden, çocukların tümünün yeni matematik kavramlarını idrak etmeye aynı anda hazır olma olasılıgı düsüktür. Çoklu-duyum teknikleri, birçok çocugun anlasılması zor matematik kavramlarını asimile etme yoluyla ögrenmesini saglayarak akranlarından geri kalmamasını saglamaktadır.
FULL TEXT (PDF): 
239-252

REFERENCES

References: 

Baroody, A. J. (1989). Manipulatives don’t come with guarantees. The Arithmetic
Teacher 37(2). 4-5.
Bassano, S. (1982). Multi-sensory input in the non-academic ESL classroom. CATESOL
Occasional Papers, 8, 51-60.
Bruner, J. (1973). Beyond the information given. New York: W. W. Norton & Company.
Bullock, J. (Personal communication, October 2003).
Bybee, R. W. (1982) Piaget for educators. Columbus: Charles E. Merrill Publishing
Company.
Cazden, C. (1981). Performance before competence: Assistance to child discourse in the
zone of proximal development. Quarterly Newsletter of the Laboratory of
Comparative Human Cognition, 3(1), 5-8.
Chester, J., Davis, J., & Reglin, G. (1991). Math manipulatives use and math
achievement of third grade students. University of North Carolina at Charlotte.
Clements, D. (1999). ‘Concrete’ manipulatives, concrete ideas. Contemporary Issues in
Early Childhood, 1(1), 45-60.
Dev, P.C., Doyle, B.A., & Valente, B. (2002). Labels needn’t stick: “At-risk” first
graders rescued with appropriate intervention. Journal of Education for Students
Placed at Risk, 7(3), 327-332.
Gallimore, R., & Tharp, R. (1990). Teaching mind in society: Teaching, schooling and
literate discourse. In L., Moll (Ed.), Vygotsky and education: Instructional
implications and applications of socio-historical psychology (pp. 175-205). New
York: Cambridge University Press.
Hiebert, J. (1988). A theory of developing competence with written mathematical
symbols. Educational Studies in Mathematics (19), 333-355.
Hiebert, J. (1989). The struggle to link written symbols with understandings: An update.
The Arithmetic Teacher 36(7), 38-43.
Institute for Multi-sensory Education. (2000). Orton-Gillingham.com. Retrieved
February 7, 2003, from http://www.orton-gillingham.com/
Kalivoda, T. B. (1978). Increasing communication with multi-sensory exercises.
Hispania, 61(4), 923-926. Retrieved November 11, 2003, from JSTOR.
Kamii, C. (1982). Number in preschool and kindergarten: Educational implications of
Piaget’s theory. Washington, D. C.: National Association of the Education of
Young Children.
Kamii, C., Lewis, B. A., & Booker, B. M. (1998). Instead of teaching missing addends.
Teaching Children Mathematics, 4, 458-461. Retrieved September 17, 2003,
from EBSCOhost.
Kamii , C., & Rummelsburg, J. (2008). Arithmetic for first graders lacking number
concepts. Teaching Children Mathematics, 14(7), 389-394.
Kelly, C., Durham, R., & Rains, J. (2004, October). Using multi-sensory materials for
supplementing the elementary mathematics curriculum: Necessary or not? Paper
presented at the meeting of School Science and Mathematics Association,
Atlanta, GA.
Kuhn, J. N., & Schroeder, H. H. (1971). A multisensory approach for teaching spelling.
Elementary English, 48(7), 865-869.
Marzola, E. S. (1987). Using manipulatives in math instruction. Reading, Writing, and
Learning Disabilities, 3, 9-20.
Moll, L. C. (1990). Introduction. In L., Moll (Ed.), Vygotsky and education:
Instructional implications and applications of socio-historical psychology (pp. 1-
27). New York: Cambridge University Press.
Moyer, P.S., Boylard, J.J., & Spikell, M.A. (2002). What are virtual manipulatives?
Teaching Children Mathematics, 8(6), 372-377.
NCTM (1973). Instructional Aids in Mathematics, Thirty-fourth Yearbook.
NCTM (2000). Principles and Standards for School Mathematics: An Overview.
No Child Left Behind Act of 2001, 20 USC § 6301 (2002).
Perry, W.G. (1970). Forms of intellectual and ethical development in the college years:
A scheme. New York: Holt, Reinhart, & Winston.
Piaget, J. (1958). The growth of logical thinking from childhood to adolescence; an
essay on the construction of formal operational structures. New York: Basic
Books.
Piaget, J. (1965). The child’s conception of number. New York: W. W. Norton &
Company Inc.
Reys, R. E. (1971). Considerations for teachers using manipulative materials. The
Arithmetic Teacher, 18 (8) 551-558.
Scott, K. S. (1993). Multisensory mathematics for children with mild disabilities.
Exceptionality, 4(2), 97-111.
Sowell, E. J. (1989). Effects of manipulative materials in mathematics instruction.
Journal for Research in Mathematics Instruction, 20(5), 498-505.
Spicer, J. (2000). Virtual manipulatives: A new tool for hands-on math. ENC Focus,
7(4), 14-15.
Suydam, M. N., & Higgins, J. L. (1984). Manipulative materials. Arithmetic Teacher,
33, 27.
Thorne, B. M., & Henley T. B. (1997). Connections in the history and systems of
psychology. New York: Houghton Mifflin Company.
Thornton, C. A., Jones, G. A., & Toohey, M. A. (1982). A multisensory approach to
thinking strategies for remedial instruction in basic addition facts. Journal for
Research in Mathematics Education, 14(3), 198-203.
Tudge, J. (1990). Vygotsky, the zone of proximal development and peer collaboration:
implications for classroom practices. In L., Moll (Ed.), Vygotsky and education:
Instructional implications and applications of socio-historical psychology (pp.
155-174). New York: Cambridge University Press.
United States Department of Education. (n.d.). No Child Left Behind. Retrieved
November 26, 2003, available from
http://www.ed.gov/nclb/landing.jhtml?src=ln
Van de Walle, J. (2007). Teaching developmentally: Elementary and middle school
mathematics (6th Ed.). Boston, MA: Allyn & Bacon.
Vygotsky, L. S. (1978). Mind in Society: the development of higher psychological
processes. (M. Cole, V. John-Steiner, S., S. Scribner, & E. Souberman, Eds &
Trans.). Cambridge, MA: Harvard University Press.

Thank you for copying data from http://www.arastirmax.com