Buradasınız

TERMAL BARİYER KAPLAMA SİSTEMLERİNDE YÜKSEK SICAKLIKTA DÜŞÜK ÇEVRİMLİ YORULMA ŞARTLARI ALTINDA OLUŞAN HASARLARIN İNCELENMESİ

FAILURE OF THERMAL BARRIER COATINGS UNDER HIGH TEMPERATURE LOW CYCLE FATIGUE CONDITIONS

Journal Name:

Publication Year:

Abstract (2. Language): 
Thermal Barrier Coatings (TBCs) are multi-layer protective coatings used in the hot section components such as combustor and turbine of advanced gas turbine engines to protect them from degrading affects of hot gases. Today, due to lack of a reliable life time assessment, the potential of these coatings cannot be fully used. Understanding of damage mechanisms of thermal barrier coatings is the key factor to increase durability and reliability. In this paper TBCs are shortly introduced and then damages resulting from high temperature low cycle fatigue tests and their probable reasons have been explained. Inconel 100, a directionally solidified nickel based superalloy as a substrate, approximately 120 μm thick NiCoCrAlY bond coat and approximately 200 μm thick 7 wt % Yttria Stabilized Zirconia ceramic top coat have been used. Both layers are deposited by EB-PVD technique. The results of the tests show that number and the size of the cracks changes with the strain range. Cracks initiate in the TGO/BC interface and propagate into the substrate perpendicularly to the loading axes. Ceramic thermal barrier coating retards the formation of cracks. On the surfaces of the specimens having only bond coat, rumpling which is a typical service damage of turbine blades has been detected.
Abstract (Original Language): 
Termal bariyer kaplamalar (TBC); gelişmiş türbinli motorların yanma odası ve türbin gibi sıcak bölümlerinde, parçaları sıcak gazların olumsuz etkilerinden korumak amacıyla kullanılan ve iki ya da daha fazla katmandan oluşan koruyucu kaplamalardır. Günümüzde güvenilir bir ömür tahmini olmadığından bu kaplamaların potansiyeli tam olarak değerlendirilememektedir. Termal bariyer kaplamalardaki hasar mekanizmaların ın iyi bir şekilde anlaşılması, kaplamanın sağlamlığının ve güvenirliğinin arttırılması için kilit faktördür. Bu çalışmada ilk önce TBC sistemleri kısaca tanıtılmış, ardından yüksek sıcaklıkta düşük çevrimli yorulma deneyleri sonucunda oluşan hasarlar ve olası nedenleri açıklanmıştır. Altlık malzemesi olarak yönlü katılaştırılmış nikel bazlı bir süperalaşım olan Inconel 100 (IN 100 DS), bağ kaplama olarak yaklaşık 120 μm kalınlığında bir NiCoCrAlY tabakası, üst kaplama olarak da yaklaşık 200 μm kalınlığında, ağırlık olarak %7 itriyum oksit ile kısmen kararlı hale getirilmiş zirkonyum oksit içeren seramik tabakası kullanılmıştır. Her iki tabaka da EB-PVD tekniği kullanılarak hazırlanmıştır. Yapılan deneyler sonucunda çatlak sayısı ve çatlak boyutunun uzama aralığıyla doğru orantılı bir şekilde değiştiği saptanmıştır. Çatlaklar TGO/BC arayüzeyinde başlamakta ve altlığa doğru yükleme eksenine dik bir şekilde ilerlemektedirler. Seramik termal bariyer kaplama tabakası çatlak oluşumunu geciktirmektedir. Yalnızca bağ kaplamaya sahip numunelerin yüzeylerinde, türbin kanatçıklarında görülen tipik servis hasarlarından birisi olan buruşma saptanmıştır.
15
27

REFERENCES

References: 

[1] Kaysser, W.A., Peters, M., Fritscher, K. ve
Schulz, U., “Processing, characterisation and testing
of EB-PVD Thermal Barrier Coatings”, AGARD SMP
Meeting on Thermal Barrier Coatings, Denmark,
1997.
[2] Williams, J.C. ve Edgar, E.A., “Progress in
structural materials for aerospace systems”, Acta
Materialia Vol. 51, 5775-5799, 2003.
[3] Peters, M., Leyens, C., Schulz, U ve Kaysser,
W.A., “EB-PVD thermal barrier coatings for
aeroengines and gas turbines”, Advanced Engineering
Materials, Vol. 3, No. 4, 193-204, 2003.
[4] Schmitt, G. ve Hertter, M., “Improved
oxidation resistance of thermal barrier coatings”,
Surface and Coatings Technology, Vol. 120-121, 84-
88, 1999.
[5] Horne, D.F., “Aircraft production technology”,
Cambridge University Press, UK, 1985.
[6] Leyens, C., Fritscher, K., Gehrling, R., Peters,
M. ve Kaysser, W.A., “Oxide scale formation on an
MCrAlY coating in various H2-H2O atmospheres”,
Surface and Coatings Technology, Vol. 82, 133-144,
1996.
[7] Beele, W., Marijnissen, G. ve Lieshot, A., “The
evolution of thermal barrier coatings-status and
upcoming solutions for today’s key issues”, Surface
and Coatings Technology, Vol. 120-121, 61-67, 1999.
[8] Schulz, U., “Phase transformation in EB-PVD
yttria partially stabilized zirconia thermal barrier
coatings during annealing”, Journal of American
Ceramic Society, Vol. 83, 904-910, 2000.
[9] Kaysser, W.A., Bartsch, M., Krell, T.,
Fritscher, K., Leyens, C., Schulz, U. ve Peters, M.,
“Ceramic thermal barriers for demanding turbine
applications”, Ceramic Forum International, Vol. 6,
32-36, 2000.
[10] Schulz, U., Krell, T., Leushake, U. ve Peters,
M., “Graded design of EB-PVD thermal barrier
coating”, AGARD SMP Meeting on Thermal Barrier
Coatings, Denmark, 1997.
[11] Hass, D.D., “Thermal barrier coatings via
directed vapour deposition”, A Dissertation the
Faculty of the School of Engineering and Applied
Science, University of Virginia, USA., 2001.
[12] Bartsch, M., Schulz, U. ve Saruhan, B., “EBPVD
Thermal Barrier Coatings for Gas Turbines-
Processing and Lifetime Assessment”, Proceeding of
the Summer School of the EU Project “SICMAC”
(HPRN-CT-2082-20203),191-214, Mao Minorca
Island, Spain, 2006.
[13] Morrell, P. ve Rickerby, D.S., “Advantages /
disadvantages of various TBC systems as perceived by
the engine manufacturer”, AGARD SMP Meeting on
Thermal Barrier Coatings, Denmark, 1997.
[14] Alperiné, S., Derrien, M., Jaslier, Y. ve Mévrel,
R., “Thermal barrier coatings: the thermal
conductivity challenge”, AGARD SMP Meeting on
Thermal Barrier Coatings, Denmark, 1997.
[15] Xu, H., Gong, S. ve Deng, L., “Preparation of
thermal barrier coatings for gas turbine blades by EBPVD”,
Thin Solid Films, Vol. 334, 98-102, 1998.
[16] Lau, H., Leyens, C., Kaden, U., Schulz, U.,
Münzer, J., Friedrich, C. ve Cosack, T., “Influence of
bondcoat pre-treatment on the cyclic lifetime of EBPVD
TBCs”, Materials Week 2001-Proceedings,
Werkstoff-Informationsgesellschaft mbH, Frankfurt,
Germany, 1-8, 2002.
[17] Guerre, C., Molins, R. ve Remy, L., “Study of
the coating stability of a TBC system”, Materials at
High Temperatures, Vol. 17 No. 2, 197-204, 2000.
[18] Chen, X.Q. ve Newaz, M., “Oxidation and
damage of EB-PVD thermal barrier coatings under
thermal cycling”, Journal of Materials Science
Letters, Vol. 20, 93-95, 2001.
[19] Hass, D.D., Slifka, A.J. ve Wadley, H.N.G.,
“Low thermal conductivity vapour deposited zirconia
microstructures”, Acta Materialia, Vol. 49, 973-983,
2001.
[20] Karlsson, A.M. ve Evans, A.G., A numerical
model for the cyclic instability of thermally grown
oxides in thermal barrier systems, Acta Materialia, 49,
1793-1804, 2001.
[21] Karlsson, A.M. ve Evans, A.G., “A numerical
model of ratcheting in thermal barrier systems”, Mat.
Res. Soc. Symp. Proc., Materials Research Society,
USA, 645E, M9.4.1-6, 2001.
[22] Selçuk, A. ve Atkinson, A., “Analysis of the
Cr3+ luminescence spectra from thermally grown
oxide in thermal barrier coatings”, Materials Science
and Engineering A, Vol. 335, 147-156, 2002.
[23] Hutchinson, J.W. ve Evans, A.G., “On the
delamination of thermal barrier coatings in a thermal
gradient”, Surface and Coatings Technology, Vol.
149, 179-184, 2002.
[24] Bouyakis, K.-D., Lontos, A., Michailidis, N.,
Knotek, O., Lugscheider, E., Bobzin, K. ve Etzkorn,
A., “Determination of mechanical properties of
electron beam-physical vapour deposition-thermal
barrier coatings (EB-PVD-TBCs) by means of
nanoindention and impact testing”, Surface and
Coatings Technology, Vol. 163-164, 75-80, 2003.
[25] Schulz, U., Lau, H., Rätzer-Schibe, H.-J. ve
Kayser W.A., “Factors affecting cyclic lifetime of EBPVD
thermal barrier coatings with various bond
coats”, Zeitschrift für Metallkunde, Vol. 94 No. 6,
649-654, 2003.
Termal Bariyer Kaplama Sistemlerinde Yüksek Sıcaklıkta Düşük Çevrimli Yorulma Şartları Altında Oluşan
Hasarların İncelenmesi
DALKILIÇ, TANATMIŞ
27
[26] Freborg, A.M., Ferguson, B.L., Brindley, W.J.
ve Petrus, G.J., “Modeling oxidation induced stresses
in thermal barrier coatings”, Materials Science and
Engineering A, Vol. 245, 182-190, 1998.
[27] Vaßen, R., Kerkhoff, G. ve Stöver, D.,
“Development of a micromechanical life prediction
model for plasma sprayed thermal barrier coatings”,
Materials Science and Engineering A, Vol.303, 100-
109, 2001.
[28] Pennefather, R.C. ve Bone, D.H., “Mechanical
degredation of coating systems in high temperature
cyclic oxidation”, Surface and Coatings Technology,
Vol. 76-77, 47-52, 1995.
[29] Bartsch, M. ve Baufeld, B., “Effects of
controlled thermal gradients in thermal mechanical
fatigue”, 5th International Conference on Low Cycle
Fatigue (Editörler: Portella, P.d., Şehitoğlu, H. ve
Hatanaka, K.), Deutscher Verband für
Materialforschung und –prüfung e.V., Berlin,
Germany, 183-188, 2003.
[30] Suresh, S., Fatigue of materials, Cambridge
University Press, A.B.D., 1992.

Thank you for copying data from http://www.arastirmax.com