Buradasınız

SAF ZİRKONYUMUN MİKROARK OKSİDASYON YÖNTEMİYLE OKSİT ESASLI SERAMİK KAPLANMASI

OXIDE BASED CERAMIC COATING ON PURE ZIRCONIUM BY MICROARC OXIDATION METHOD

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the surface of pure zirconium was coated by microarc oxidation method under constant electrical parameters and the same electrolytic composition for the duration of 5, 15, 30, 45, 60, 90, 120 minutes. The phase content, surface morphology and microhardness of the formed coatings were characterized by X-ray diffraction, scanning electron microscopy, profilometry and microhardness measurements. The coating was porous in nature and contains significant amount of microcracks. The coating is formed by the crystalline phases of monoclinic (m- ZrO2) and tetragonal (t-ZrO2) zirconium oxide and duration of the process did not affect the phase content. The existence of the silicon in addition to zirconium and oxygen in the coatings was evident. The thickness of the coating increased linearly from 5 μm to 135 μm with the increase of the coating duration. The surface roughness was raised from 0.5 μm to 6.4 μm with the coating duration. The average coating microhardness was measured as 600 HV compared to the pure zirconium substrate’s microhardness of 200 HV and there was no systematical change with the coating duration.
Abstract (Original Language): 
Bu çalışmada, saf zirkonyumun yüzeyi mikroark oksidasyon yöntemi ile sabit elektriksel şartlarda ve aynı elektrolit kompozisyonunda 5, 15, 30, 45, 60, 90 ve 120 dakika süreyle kaplanmıştır. Zr üzerinde oluşturulan kaplamanın faz kompozisyonu, mikroyapısı, yüzey morfolojisi ve mikrosertliği; X-ray kırınımı, taramalı elektron mikroskobu, profilometre ve mikrosertlik ölçümü ile karakterize edilmiştir. Kaplama tabakası gözenekli yapıda olup, önemli miktarda mikro çatlaklar içermektedir. Kaplamanın kristal yapıdaki monoklinik (m-ZrO2) ve tetragonal (t-ZrO2) zirkonyum oksit fazlarından oluştuğu ve kaplama süresinin oluşan faz içeriğini etkilemediği tespit edilmiştir. Kaplama içerisinde zirkonyum ve oksijenin yanında silisyumun varlığı da tespit edilmiştir. Kaplama süresindeki artışla beraber kaplama kalınlığı doğrusal şekilde 5 μm’den 135 μm’ye yükselmiştir. Yüzey pürüzlülüğü kaplama süresi ile artarak, 0,5 μm’den 6,4 μm’ye yükselmiştir. Altlık malzeme zirkonyumun 200 HV sertliğine karşılık, oksit kaplama tabakası sertliği yaklaşık 600 HV olarak ölçülmüştür ve mikrosertlik değerinde kaplama süresine bağlı sistematik bir değişim görülmemiştir.
851
860

REFERENCES

References: 

1. Xue, W., Deng, Z., H. Chen, Ma,, Zhang R. T.,
Microstructure and phase composition of microarc
oxidation coatings formed on Ti-6Al-4V alloy in
aluminate solution, Surface Eng, 17, 323-326,
2001.
2. Yerokhin, A.L., Nie, X., Leyland, A. Matthews, A.,
Dowey, S.J., Plasma electrolysis for surface
engineering, Surf Coat Tech, 122, 73-93, 1999.
3. G.L. Yang, X.Y. Lu, Y.Z. Bai, Z.S. Jin,
Characterization of microarc oxidation discharge
process for depositing ceramic coating, Chinese
Phys Lett, 18, 1141-1143, 2001.
4. Yerokhin, A.L., Snizhko, L.O., Gurevina, N.L.,
Leyland, A., Pilkington, A., Matthews, A., Spatial
characteristics of discharge phenomena in plasma
electrolytic oxidation of aluminium alloy, Surf
Coat Tech, 177, 779-783, 2004.
5. Wu, X.H., Qin, W., Guo, Y., Xie, Z.Y., Selflubricative
coating grown by micro-plasma
oxidation on aluminum alloys in the solution of
aluminate-graphite, Appl Surf Sci, 254, 6395-
6399, 2008.
6. Sundararajan, G., Krishna, L.R., Mechanisms
underlying the formation of thick alumina coatings
through the MAO coating technology, Surf Coat
Tech, 167, 269-277, 2003.
7. Krishna, L.R., Purnima, A.S., N.P. Wasekar, G.
Sundararajan, Kinetics and properties of micro arc
oxidation coatings deposited on commercial Al
alloys, Metall Mater Trans A, 38A, 370-378,
2007.
8. Verdier, S., Boinet, M., Maximovitch, S., Dalard,
F., Formation, structure and composition of anodic
films on AM60 magnesium alloy obtained by DC
plasma anodising, Corros Sci, 47, 1429-1444,
2005.
9. Liang, J., Guo, B.G., Tian, J., Liu, H.W., Zhou,
J.F., Liu, W.M., Xu, T., Effects of NaAlO2 on
structure and corrosion resistance of microarc
oxidation coatings formed on AM60B magnesium
alloy in phosphate-KOH electrolyte, Surf Coat
Tech, 199, 121-126, 2005.
10. Sun, X.T., Jiang, Z.H., Yao, Z.P., Zhang, X.L., The
effects of anodic and cathodic processes on the
characteristics of ceramic coatings formed on
titanium alloy through the MAO coating
technology, Appl Surf Sci, 252, 441-447, 2005.
11. Krishna, L.R., Somaraju, K.R.C., Sundararajan, G.,
The tribological performance of ultra-hard ceramic
composite coatings obtained through microarc
oxidation, Surf Coat Tech, 163, 484-490, 2003.
12. Yerokhin, A.L., Shatrov, A., Samsonov, V.,
Shashkov, P., Pilkington, A., Leyland, A.,
Matthews, A., Oxide ceramic coatings on
aluminium alloys produced by a pulsed bipolar
plasma electrolytic oxidation process, Surf Coat
Tech, 199, 150-157, 2005.
13. Liang, J., Guo, B.G., Tian, J., Liu, H.W., Zhou,
J.F., Xu, T., Effect of potassium fluoride in
electrolytic solution on the structure and properties
of microarc oxidation coatings on magnesium
alloy, Appl Surf Sci, 252, 345-351, 2005.
14. Martini, C., Sabatini, G., Ceschini, L., Williams,
J.A., Hutchings, I.M., Improving sliding and
abrasive wear behaviour of cast A356 and wrought
AA7075 aluminium alloys by plasma electrolytic
oxidation, Mater Design, 31, 816-828, 2010.
15. Nie, X., Meletis, E.I., Jiang, J.C., Leyland, A.,
Yerokhin, A.L., Matthews, A., Abrasive
wear/corrosion properties and TEM analysis of
Al2O3 coatings fabricated using plasma
electrolysis, Surf Coat Tech, 149, 245-251, 2002.
16. Chen, F., Zhou, H., Zhang, Q.F., Lv, F.X., Friction
and Wear of the Ceramic Coating Formed on
Magnesium Alloy, Advanced Tribology, 467-470,
2009.
17. Li, J., Bai, X.D., Zhang, D.L., Li, H.Y.,
Characterization and structure study of the anodic
oxide film on Zircaloy-4 synthesized using NaOH
electrolytes at room temperature, Appl Surf Sci,
252, 7436-7441, 2006.
18. Han,Y., Yan, Y.Y., Lu, C.G., The effect of
chemical treatment on apatite-forming ability of
the macroporous zirconia films formed by microY.
Gençer ve ark. Saf Zirkonyumun Mikroark Oksidasyon Yöntemiyle Oksit Esaslı Seramik Kaplaması
860 Gazi Üniv. Müh. Mim. Fak. Der. Cilt 26, No 4, 2011
arc oxidation, Appl Surf Sci, 254, 4833-4839,
2008.
19. Good, V., Widding, K., Hunter, G., Heuer, D.,
Oxidized zirconium: a potentially longer lasting hip
implant, Mater Design, 26, 618-622, 2005.
20. Uchida, M., Kim, H.M., Miyaji, F., Kokubo, T.,
Nakamura, T., Apatite formation on zirconium
metal treated with aqueous NaOH, Biomaterials,
23, 313-317, 2002.
21. Xue, W.B., Zhu, Q.Z., Jin, Q., Hua, M.,
Characterization of ceramic coatings fabricated on
zirconium alloy by plasma electrolytic oxidation in
silicate electrolyte, Mater Chem Phys, 120, 656-
660, 2010.
22. Miyake, M., Uno, M., Yamanaka, S., On the
zirconium-oxygen-hydrogen ternary system, J Nucl
Mater, 270, 233-241, 1999.
23. Setoyama, D., Yamanaka, S., Phase diagram of Zr-
O-H ternary system, J Alloy Compd, 370, 144-
148, 2004.
24. Uchida, M., Kim, H.M., Kokubo, T., Tanaka, K.,
Nakamura, T., Structural dependence of apatite
formation on zirconia gels in a simulated body
fluid, J Ceram Soc Jpn, 110, 710-715, 2002.
25. Kobayashi, A., Shanmugavelayutham, G., Yano, S.,
Microstructural characterization and properties of
ZrO2/Al2O3 thermal barrier coatings by gas tunneltype
plasma spraying, Vacuum, 80, 1336-1340,
2006.
26. Chaim, R., Zhitomirsky, I., GalOr, L., Bestgen, H.,
Electrochemical Al2O3-ZrO2 composite coatings on
non-oxide ceramic substrates, J Mater Sci, 32,
389-400, 1997.
27. Leushake, U., Krell, T., Schulz, U., Peters, M.,
Kaysser, W.A., Rabin, B.H., Microstructure and
phase stability of EB-PVD alumina and
alumina/zirconia for thermal barrier coating
applications, Surf Coat Tech, 94-5, 131-136, 1997
28. Pauporte, T., Finne, J., Kahn-Harari, A., Lincot, D.,
Growth by plasma electrolysis of zirconium oxide
films in the micrometer range, Surf Coat Tech,
199, 213-219, 2005.
29. Ohki, M., Hwu, T.C., Mutoh, T., Thermal cycle
damage of wear-resistant ceramic coatings, T
Indian I Metals, 53, 135-140, 2000.
30. Han, Y., Yan, Y.Y., Li, D.C., Huang, J.J., Lian, Q.,
Effect of NaAlO2 concentrations on microstructure
and corrosion resistance of Al2O3/ZrO2 coatings
formed on zirconium by micro-arc oxidation, Appl
Surf Sci, 256, 6359-6366, 2010.
31. Hobbs, L.W., Rosen, V.B., Mangin, S.P., Treska,
M., Hunter, G., Oxidation microstructures and
interfaces in the oxidized zirconium knee, Int J
Appl Ceram Tec, 2, 221-246, 2005.
32. Han, Y., Yan,Y.Y., Structure and bioactivity of
micro-arc oxidized zirconia films, Surf Coat
Tech, 201, 5692-5695, 2007.
33. Han, Y., Yan, Y.Y., Lu, C.G., Zhang, Y.M., Xu,
K.W., Bioactivity and osteoblast response of the
micro-arc oxidized zirconia films, J Biomed
Mater Res A, 88A, 117-127, 2009.
34. Liu, L., Liu, Z., Chan, K.C., Luo, H.H., Cai, Q.Z.,
Zhang, S.M., Surface modification and
biocompatibility of Ni-free Zr-based bulk metallic
glass, Scripta Mater, 58, 231-234, 2008.
35. Klapkiv, M.D., State of an electrolytic plasma in
the process of synthesis of oxides based on
aluminum, Mater Sci+, 31, 494-499, 1995.
36. Wei, T.B., Yan, F.Y., Tian, J., Characterization
and wear- and corrosion-resistance of microarc
oxidation ceramic coatings on aluminum alloy, J
Alloy Compd, 389, 169-176, 2005.
37. Xue, W.B., Deng, Z.W., Lai, Y.C., Chen, R.Y.,
Analysis of phase distribution for ceramic coatings
formed by microarc oxidation on aluminum alloy,
J Am Ceram Soc, 81, 1365-1368, 1998.
38. Yerokhin, A.L., Lyubimov, V.V., Ashitkov, R.V.,
Phase formation in ceramic coatings during plasma
electrolytic oxidation of aluminium alloys, Ceram
Int, 24, 1-6, 1998.
39. Mcpherso, R., Formation of Metastable Phases in
Flame-Prepared and Plasma-Prepared Alumina, J
Mater Sci, 8, 851-858,1973.
40. Wu, H.H., Jin, Z.S., Long, B.Y., Yu, F.R., Lu,
X.Y., Characterization of microarc oxidation
process on aluminium alloy, Chinese Phys Lett,
20, 1815-1818, 2003.

Thank you for copying data from http://www.arastirmax.com