You are here

SUBMAKSİMAL EGZERSİZİN SEDANTER BİREYLERDEKİ TİROİD HORMON METABOLİZMASI ÜZERİNE ETKİLERİ

THE EFFECTS OF SUBMAXIMAL EXERCISES ON THE THYROID HORMONAL METABOLISM OF SEDENTARY INDIVIDUALS

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
The objective of this study is to analyze the effects of acute exercises the sedentary individuals do on thyroid hormonal metabolism. The research was carried out on 14 sedentary males between the ages of 18 and 24. The study was approved by the local committee for ethics. The average age of the subjects was: 20,4 ± 0,65 years, their average body weights: 76,86 ± 2,08 kg and their average height was: 175,07 ± 1,26 cm. As for the exercise application, the subjects were made tired through Bruce protocol. 10 cc of blood samples were taken from the subjects each time before the exercise, after the exercise, 24 hours after the exercise and 48 hours after the exercise. In the obtained blood samples, the parameters of serum TSH, T3, T4, were analyzed in Backman LX-20 auto analyzer through Lot No:T1142, Mg Lot No:907035, P Lot No:903417 Backman Coulter test kits. The arithmetic averages, and standard deviations of all the parameters were determined. The repeating ANOVA test was used for the determination of the difference between the parameters. Confidence interval was chosen as 95% and the values of p<0.05 and below was accepted as statistically significant. According to the measurements before and after the exercises, significant differences were found between the parameters of TSH, T3, and T4 (p<0.05). In conclusion, it can be said that the protocol of these acute submaximal exercises done by sedentary individuals decreased serum TSH, T3, and T4 levels and it approached to normal levels 48 hours after the exercises.
Abstract (Original Language): 
Bu çalışmanın amacı, sedanter bireylere yaptırılan akut egzersizin, Tiroid hormon metabolizması üzerine olan etkilerinin araştırılmasıdır. Araştırma, 18-24 yaş grubunda olan 14 sedanter erkek üzerinde gerçekleştirildi. Çalışma lokal etik komite tarafından onaylandı. Çalışmaya alınan deneklerin yaş ortalaması: 20,4 ± 0,65 yıl, vücut ağırlık ortalaması: 76,86 ± 2,08 kg ve boy ortalaması: 175,07 ± 1,26 cm olarak tespit edildi. Egzersiz uygulaması olarak deneklere Bruce protokolü uygulanarak yorgunluk oluşturuldu. Deneklerden; egzersiz öncesi, egzersiz sonrası, egzersizden 24 saat ve egzersizden 48 saat sonra her seferde 10 cc olmak üzere toplam 4 kez kan alındı. Alınan kan örneklerinde serum TSH, T3, T4 parametreleri Lot No:T1142, Mg Lot No:907035, P Lot No:903417 Backman Coulter test kitleri kullanılarak Backman LX-20 otoanalizöründe analiz edildi. Tüm parametrelerin aritmetik ortalamaları ve standart sapmaları tespit edildi. Parametreler arasındaki farklılığın tespitinde tekrarlayan ANOVA testi kullanıldı. Güven aralığı %95 olarak seçilerek p<0.05 ile altındaki değerler istatistiksel olarak anlamlı kabul edildi. İncelenen egzersiz öncesi ve sonrası ölçümlere göre TSH, T3, T4 parametreleri arasında anlamlı farklılıklar (p<0.05) bulundu. Sonuç olarak, sedanter bireylere yaptırılan bu akut submaksimal egzersiz protokolünün, serum TSH, T3 ve T4 seviyelerinde önemli azalmalara neden olduğu, egzersizden 48 saat sonra ise normal düzeylerine yaklaştığı söylenebilir.

REFERENCES

References: 

1.
Masters, P.A., Simons, R.J. Clinical Use of Sensitive Assays for Thyroid–stimulating Hormone. J Gen Intern Med. 11; 115-127,1996.
2.
Levey, G.S., Klein, I. Disorders of The Thyroid. In: Stein J, editor. Stei’s textbook of Medicine. 2nd edition. Brown. 1383-1397. 1994.
3.
Glass, C.K., Holloway, J.M. Regulation of Gene Expression by The Thyroid Hormone Receptor. Biochem Biophys Acta, 1032; 157-76, 1990.
4.
Brent, G.A., Moore, D.D., Larsen, P.R. Thyroid Hormone Regulation of Gene Expression. Ann Rev Physiol, 53; 17-35, 1991.
5.
Dillman, W.H. Biochemical Basis of Thyroid Hormone Action in The Heart. Am J Med, 88; 626-30, 1990.
6.
Koloğlu, S., Erdoğan, G. Tiroid: Genel Görüş ve Bilgiler. In: Erdoğan G, editor. Koloğlu Endokrinoloji, Temel ve Klinik, 2. Basım, Nobel Kitabevi, Ankara. 155-72, 2005.
7.
Brent, G.A. The molecular basis of thyroid hormone action. N Engl J Med, 1(13):847-53,1994.
8.
Chidakel, A., Mentuccia, D., Celi, F.S. Peripheral metabolism of thyroid hormone and glucose homeostasis. Thyroi, 5(8): 899-903, 2005.
31
Niğde Üniversitesi Beden Eğitimi Ve Spor Bilimleri Dergisi Cilt 5, Sayı 1, 2011
Nigde University Journal of Physical Education And Sport Sciences Vol 5, No 1, 2011
9.
Itoh, K., Osada, N., Inoue, K., Samejima, H., Seki, A., Omiya, K., Miyake, F. Relationship between exercise intolerance and levels of neurohormonal factors and proinflammatory cytokines in patients with stable chronic heart failure. Int Heart J, 46(6):1049-59, 2005.
10.
Petersen, A.M.W., Pedersen, B.K. The antiinflamatory effect of exercise. J Appl Physiol,98; 1154-1162, 2005.
11.
Demir, M., Filiz, K. Spor egzersizlerinin insan organizmasi üzerindeki etkileri. Gazi Üniversitesi Kirsehir Eğitim Fakültesi; 5(2):109-114, 2004.
12.
Guyton, A.C., Hall, J.E. Tıbbi Fizyoloji. 10 Baskı, Nobel Kitapevi, Ankara 2001.
13.
Lucille, L.S. Cytokine hypothesis of overtraining: A physiological adaptation to excessive stress?. Medicine Science in Sports Exercise, 32(2): 317-331, 2000.
14.
Gullu, S., Altuntas, F., Dincer, I., Erol, C., Kamel, N. Effects of TSH-suppressive therapy on cardiac morphology and function: beneficial effects of the addition of beta-blockade on diastolic dysfunction. Eur J Endocrinol, 150:655–61, 2004.
15.
Sterling, K., Lazzarus, J.H., Milck, P.O., Sakurada, T., Brenner, M.A. Mitochondrial thyroid hormone receptor: localization and physiological significance. Science, 201:1126–1129, 1978.
16.
Noonan, V., Dean, E. Submaximal Exercise Testing: Clinical Application and Interpretation, Phsical Therapy, 80: 782-807, 2000.
17.
Berne, M.R., Levy, N.M., Koeppen M.B., Stanton, B.A. Fizyoloji, 5.baskı, 2008.
18.
Mastorakos, G., Pavlatou, M. Exercise as a stress model and the interplay between the hypothalamus–pituitary–adrenal and the hypothalamus–pituitary–thyroid axes. Hormone and Metabolic Research. 37: 577–584, 2005.
19.
Fortunato, R.S., Ignácio, D.L., Padron, A.S., Peçanha, R., Marassi, M.P., Rosenthal, D., Werneck-de-Castro, J.P., Carvalho, D.P. The effect of acute exercise session on thyroid hormone economy in rats. J Endocrinol. 198(2): 347-53, 2008.
20.
Limanova, Z., Sonka, J., Kratochvil, O., Sonka, K., Kanka, J., Sprynarova, S. Effects of exercise on serum cortisol and thyroid hormones. Experimental and Clinical Endocrinology, 81: 308–314, 1983.
21.
Sullo, A., Brizzi, G., Maffulli, N. Deiodinating activity in the Brown adipose tissue of rats following short cold exposure after strenuous exercise.Physiology and Behavior, 80:399–403, 2003.
22.
Krotkiewski, M., Sjo strom, L., Sullivan, L., Lundberg, P.A., Lindstedt, G., Wetterqvist, H., Bjorntorp, P. The effect of acute a chronic exercise on thyroid hormones in obesity. Acta Medica Scandinavica, 216: 269–275, 1984.
23.
Ciloglu, F., Peker, I., Pehlivan, A., Karacabey, K., Ilhan, N., Saygin, O., Ozmerdivenli, R. Exercise intensity and its effects on thyroid hormones. Neuro Endocrinology Letters, 26; 830–834, 2005.
24.
Hackney, A.C., McMurray, R.G., Judelson, D.A., Harrell, J.S. Relationship between caloric intake, body composition, and physical activity to leptin, thyroid hormones, and cortisol in adolescents. Jpn. J Physiol. 53: 475–9, 2003.
25.
Pakarinen, A., Hakkinen, K., Alen, M. Serum thyroid hormones, thyrotropin and thyroxin binding globulin in elite athletes during very intense strength training in of one week. J Sports Med Phys Fitness, 31:142–6, 1991.

Thank you for copying data from http://www.arastirmax.com