You are here

Gerçek Yaşam İçerikli Öğretim Uygulamalarının Öğretmen Adaylarının Astronomi ve Elektrik Konularını Günlük Yaşamla İlişkilendirmelerine Etkisi

The Effects of Teaching Applications with Real Life Content on the Levels of Pre-Service Teachers' Abilities to Associate Daily Life with Astronomy and Electrical Learning Topics

Journal Name:

Publication Year:

DOI: 
10.14527/pegegog.2018.010
Abstract (2. Language): 
Students’ associating their knowledge with daily life demonstrates great significance in terms of understanding the importance of topics they learn in school as well as knowing where and how they are used in their daily life. In this context, teachers who will reflect these relationships in learning environments must have sufficient knowledge and experience. In this research, it was aimed to investigate the effects of teaching applications with real life content on the levels of pre-service teachers' abilities to associate daily life with astronomy and electrical learning topics. The sample consisted of totally 30 fourth class students who were at the department of Science Teaching in the Faculty of Education. In the research, astronomy and electrical learning topics were chosen and activities based on real life problems in these were applied. The data gathered were based on the effects of these activities. The research was conducted following an experimental design and data were collected applying the pre-post test pattern. The data were collected through open-ended questionnaires related to the use of learning topics in daily life. As a result, it was found that the levels of associating the learning topics with daily life were nearly doubled in the field of electrical and astronomy learning topics.
Abstract (Original Language): 
Öğrencilerin bilgilerini günlük yaşamla ilişkilendirmeleri; okul ortamında öğrenmiş oldukları konuların önemini anlamaları, nerede ve nasıl kullanılacağını görmeleri ve konuların aslında günlük yaşantıyla bütünleşik olduğunun farkına varmaları açısından büyük önem taşımaktadır. Bu bağlamda; öğrenme ortamlarına bu ilişkileri yansıtacak olan öğretmenlerin yeterli bilgi ve deneyim sahibi olmaları gerekmektedir. Araştırmada; Gerçek yaşam içerikli öğretim uygulamalarının öğretmen adaylarının astronomi ve elektrik öğrenme alanları ile günlük yaşamı ilişkilendirebilme düzeylerine etkisinin incelenmesi amaçlanmıştır. Katılımcılar Fen Bilgisi Eğitimi Anabilim Dalında öğrenim gören toplam 30 dördüncü sınıf öğrencisinden oluşmaktadır. Çalışmada astronomi ve elektrik öğrenme alanları seçilmiş ve bu öğrenme alanlarında gerçek yaşam problemlerine dayalı etkinlikler yapılmıştır. Çalışmadaki veriler, bu etkinliklerin öğretmen adaylarının astronomi ve elektrik konularını günlük yaşamla ilişkilendirme durumlarına dayalı olarak elde edilmiştir. Araştırma deneysel nitelikte olup veriler önson test desen kullanılarak toplanmıştır. Veriler nitel olarak, öğrenme alanlarının günlük hayatta kullanımına ilişkin açık uçlu anketler ile toplanmıştır. Çalışma sonunda öğrenme alanlarının günlük yaşamla ilişkilendirme düzeylerinin elektrik öğrenme alanında ve astronomi öğrenme alanında yaklaşık iki katına çıktığı görülmüştür.
229
252

REFERENCES

References: 

Alev, N. & Karal, I. S. (2013). Determining physics teachers’ pedagogical content knowledge on electricity
and magnetism topics. Mersin University Journal of the Faculty of Educatio, 9(2), 88-108.
Ayvacı, H. Ş. (2010). Views of physics teachers about context based approach. Dicle University Journal of
Ziya Gökalp Education Faculty, 15(15), 42-51.
Ayvaci, H. Ş., Nas, S. E. & Dilber, Y. (2016). Effectiveness of the context-based guide materials on
students’ conceptual understanding: “Conducting and insulating materials” Sample. YYU Journal of
Education Faculty), 8 (I),51-78.
Avargil, S., Herscovitz, O. & Dori, Y. J. (2012). Teaching thinking skills in context-based learning: Teachers’
challenges and assessment knowledge. Journal of Science Education and Technology, 21(2), 207-225.
Bar, V., Azaiza, E., Azaiza, D. & Shirtz, A. S. (2016). Emphasizing the role of the insulator in electric
circuits: Toward a more symmetric approach to ınsulator and conductor in the ınstruction of
electricity. World Journal of Educational Research, 3(1), 112.
Barker, V. & Millar, R. (1999). Students’ reasoning about basic chemical reactions: what changes occur
during a context-based post-16 chemistry course?. International Journal Science Education, 21(6),
645-665.
Bektaşlı, B. (2016). The relationship between preservice science teachers' attitude toward astronomy
and their understanding of basic astronomy concepts. International Journal of Progressive Education.
12(1), 108-116.
Brunsell, E. & Marcks, J. (2005). Identifying a baseline for teachers’ astronomy content knowledge.
Astronomy Education Review, 2(3), 38–46.
Bülbül, M. Ş. & Matthews, K. (2012). Bağlam temelli eğiṫimin olasi geleceği. X. Ulusal Fen Bilimleri ve
Matematik Eğitimi Kongresi (p. 548). Niğde. Retrieved from
http://kongre.nigde.edu.tr/xufbmek/dosyalar/tam_metin/pdf/2487-30_05_201...
Büyüköztürk, Ş., Cakmak, E. K., Akgün, Ö. E., Karadeniz, Ş. & Demirel, F. (2010). Scientific research
methods. Ankara: Pegem Akademi.
Cantrell, P., Young, S. & Moore, A. (2003). Factors effecting science teaching efficacy of preservice
elementary teachers. Journal of Teacher Education, 14(3), 177-192.
Choi, H. J. & Johnson, S. D. (2005). The effect of context-based video instruction on learning and
motivation in on-line courses. The American Journal of Distance Education, 19(4), 215–227.
Çepni, S. & Keleş, E. (2006). Turkish students' conceptions about the simple electric circuits.
International Journal of Science and Mathematics Education, 4(2), 269-291.
Demircioğlu, H. (2008). Sınıf öğretmeni adaylarına yönelik maddenin halleri konusuyla ilgili bağlam
temelli materyal geliştirilmesi ve etkililiğinin araştırılması. PhD Thesis, KTÜ Fen Bilimleri Enstitüsü,
Trabzon, Türkiye.
De Jong, O. (2008). Context-based chemical education: how to improve it? Paper based on the plenary
lecture presented at the 19th ICCE, Seoul, Korea, 12-17 August 2006, Chemical Education
International, 8(1). 9 June 2011.
Emrahoğlu, N. & Öztürk, A. (2009). A longitudinal research on the analysis of the prospective science
teachers’ level of understanding the astronomical concepts and their misconceptions. Journal of the
Cukurova University Institute of Social Sciences, 18 (1), 165–180.
Gaigher, E. (2014). Questions about answers: probing teachers' awareness and planned remediation of
learners' misconceptions about electric circuits. African Journal of Research in Mathematics, Science
and Technology Education, 18(2), 176-187.
Gainsburg, J. (2008). Real-world connections in secondary mathematics teaching. Journal of
Mathematics Teacher Education, 11(3), 199-219.
Paşa YALÇIN, et al. – Pegem Eğitim ve Öğretim Dergisi, 8(2), 2018, 229-252
249
Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science
Education, 28(9), 957-976.
Gilbert, J. K., Bulte, A. M. & Pilot, A. (2011). Concept development and transfer in context based science
education. International Journal of Science Education, 33(6), 817-837.
Gomez-Zwiep, S. (2008). Elementary teachers’ understanding of students’ science misconceptions:
Implications for practice and teacher education. Journal of Science Teacher Education, 19(5), 437-
454.
İyibil, Ü. & Arslan, A. S. (2010). Pre-service physics teachers’ mental models about stars. Necatibey
Faculty of Education Electronic Journal of Science & Mathematics Education, 4(2), 25-46.
Kalkan, H. & Kıroğlu, K. (2007). Science and nonscience students’ ideas about basic astronomy concepts
in pre-service training for elementary school teachers. Astronomy Education Review, 6 (1), 15-24.
Kaltakçi, D. & Eryilmaz, A. (2010). Identifying pre-service physics teachers’ misconceptions with threetier
tests. GIREP-ICPE-MPTL Conference: Teaching and Learning Physics today: Challenges.
Kanlı, U. (2014). A Study on identifying the misconceptions of pre-service and in-service teachers about
basic astronomy concepts. Eurasia Journal of Mathematics, Science & Technology Education, 10 (5),
471-479.
Kapartzianis, A. & Kriek, J. (2014). Conceptual change activities alleviating misconceptions about electric
circuits. Journal of Baltic Science Education, 13(3), 298-315.
Karal, I. S., Alev, N. & Başkan, Z. (2010). Student teachers’ subject matter knowledge (SMK) on electric
current and magnetic field. Procedia-Social and Behavioral Sciences, 2(2), 1498-1502.
Karslı, F. & Yiğit, M. (2015). Effect of context-based learning approach on 12 grade students' conceptual
understanding about alkanes. İnönü University, Journal of the Faculty of Education, 16(1), 43-62.
King, D. T. (2007). Teacher beliefs and constraints in implementing a context-based approach in
chemistry. Teaching Science: The Journal of the Australian Science Teachers Association, 53(1), 14-18.
King, D. & Ginns, I. (2015) Implementing a context-based environmental science unit in the middle years:
Teaching and learning at the creek. Teaching Science, 61(3), 26-36.
King, D., Bellocchi, A. & Ritchie, S. M. (2008). Making connections: Learning and teaching chemistry in
context. Research in Science Education, 38(3), 365-384.
King, D. T. & Ritchie, S. M. (2013). Academic success in context-based chemistry: Demonstrating fluid
transitions between concepts and context. International Journal in Science Education, 35(7), 1159-
1182.
King, D. T., Winner, E. & Ginns, I. (2011). Outcomes and implications of one teacher’s approach to
context-based science in the middle years. Teaching Science, 57(2), 26-30.
Kistak, Ö. (2014). Teaching the “sound” unit with context-based learning at eight grades in science and
technology lesson. Yayınlanmamış Yüksek Lisans Tezi, Balıkesir üniversitesi Fen Bilimleri Enstitüsü.
Korur, F. (2015). Exploring seventh-grade students’ and pre-service science teachers’ misconceptions in
astronomical concepts. Eurasia Journal of Mathematics, Science & Technology Education, 11(5),
1041-1060.
Kurnaz, M. A. (2013). An investigation of physics teachers’ perceptions of context based physics
problems, Kastamonu Education Journal, 21(1), 375-390.
Kurnaz, M. A., Gültekin, N. G. & İyibil, Ü.G. (2013). On Turkish candidate science teachers' pre-existing
ideas about some basic astronomy concepts. Procedia - Social and Behavioral Sciences, 93, 247 –
251.
Küçüközer, H. & Kocakülah, S. (2008). Effect of simple electric circuits teaching on conceptual change in
grade 9 physics course. Journal of Turkish Science Education, 5(1), 59-74.
Paşa YALÇIN, et al. – Pegem Eğitim ve Öğretim Dergisi, 8(2), 2018, 229-252
250
Küçüközer, H. & Demirci, N. (2008). Pre-service and in-service physics teachers’ ideas about simple
electric circuits. Eurasia Journal of Mathematics, Science and Technology Education, 4(3), 303-311.
Menthe, J. & Parchmann, I. (2015). Getting Involved: Context-based learning in chemistry education. in
affective dimensions in chemistry education (pp. 51-67). Springer Berlin Heidelberg
Michelet, S., Adam, J. M. & Luengo, V. (2007). Adaptive learning scenarios for detection of
misconceptions about electricity and remediation. International Journal of Emerging Technologies in
Learning, 2(1), 1-5.
Ogan-Bekiroğlu, F. (2007). Effects of model-based teaching on pre-service physics teachers’ conceptions
of the moon, moon phases, and other lunar phenomena. International Journal of Science Education,
29(5), 555-593.
Osborne, J., Simon, S. & Collins, S. (2003). Attitudes towards science: A review of the literature and its
implications. International journal of science education, 25(9), 1049-1079.
Overman, M., Vermunt, J. D., Meijer, P. C., Bulte, A. M. & Brekelmans, M. (2014). Students' perceptions
of teaching in context-based and traditional chemistry classrooms: Comparing content, learning
activities, and interpersonal perspectives. International Journal of Science Education, 36(11), 1871-
1901.
Özturan Sağırlı, M., Baş, F., Çakmak, Z. & Okur, M. (2016). The effects of real life contented teaching
practices on the levels of pre-service elementary mathematics teachers’ association mathematics
with daily life. Yüzüncü Yıl University Journal of Education Faculty, 8(1), 164-193.
Parchmann, I., Grasel, C., Baer, A., Nentwig, P., Demuth, R., Ralle, B., et al. (2006). "Chemie im Kontext":
A symbiotic implementation of a context-based teaching and learning approach. International
Journal of Science Education, 28(9), 1041-1062.
Peşman, H. & Eryılmaz, A. (2010). Development of a three-tier test to assess misconceptions about
simple electric circuits. The Journal of Educational Research, 103(3), 208-222.
Plummer, J. D. (2009). A Cross-age study of children’s knowledge of apparent celestial motion.
International Journal of Science Education, 31(12), 1571–1605.
Plummer, J. D. & Maynard, L. (2014). Building a learning progression for celestial motion: An exploration
of students’ reasoning about the seasons. Journal of Research in Science Teaching, 51(7), 902–929.
Richey, R. C. (2000). The future role of Robert M. Gagné in instructional design. The Legacy of Robert M.
Gagne, 255-281.
Sadler, P. M., Coyle, H., Miller, J. L., Cook-Smith, N., Dussault, M. & Gould, R. R. (2010). The astronomy
and space science concept inventory: Development and validation of assessment instruments
aligned with the K–12 national science standards. Astronomy Education Review, 1(6), 25–42.
Sadler, P. M., Sonnert, G., Coyle, H. P., Cook-Smith N. & Miller, J. L. (2013). The influence of teachers’
knowledge on student learning in middle school physical science classrooms. American Educational
Research Journal, 50(5), 1020-1049.
Sencar, S., yilmaz, E. E. & Eryilmaz, A. (2001). High school students' misconceptions about simple electric
circuits. Hacettepe Üniversity Journal of Education, 21(21), 113-120.
Small, K. J. & Plummer, J. D. (2014). A longitudinal study of early elementary students’ understanding of
lunar phenomena after planetarium and classroom instruction. The Planetarian, 43(4), 18–21.
Steinberg, R. & Cormier, S. (2013). Understanding and affecting science teacher candidates’ scientific
reasoning in introductory astrophysics. Physics Review ST Physics Education Research, 9(02011), 1–
10.
Tsai, C. C. (2003). Using a conflict map as an instructional tool to change student alternative conceptions
in simple series electric-circuits. International journal of science education, 25(3), 307-327.
Paşa YALÇIN, et al. – Pegem Eğitim ve Öğretim Dergisi, 8(2), 2018, 229-252
251
Topuz, F. G., Gençer, S., Bacanak, A. & Karamustafaoğlu, O. (2013). Science and technology teachers'
views about context-based approach and the applying levels†. Amasya Education Journal, 2(1), 240-
261.
Trumper, R. (2000). University students’ conceptions of basic astronomy concepts. Physics Education,
35(1), 9–15.
Trumper, R. (2003). The need for change in elementary school teacher training-a cross-college age study
of future teachers’ conceptions of basic astronomy concepts. Teaching and Teacher Education, 19,
309–323.
Trundle, K. C., Atwood, R. K. & Christopher, J. E. (2002). Pre-service elementary teachers’ conceptions of
moon phases before and after instruction. Journal of Research in Science Teaching, 39(7), 633–658.
Trundle, K. C., Atwood, R. K. & Christopher, J. E. (2006). Pre-service elementary teachers’ knowledge of
observable moon phases and pattern of change in phases. Journal of Science Teacher Education,
17(2), 87–101.
Türkoğlu, O., Örnek, F., Gökdere, M., Süleymanoğlu, N. & Orbay, M. (2009). On pre-service science
teachers' preexisting knowledge levels about basic astronomy concepts. International Journal of
Physical Sciences, 4(11), 734-739.
Türk, C., Kalkan, S., Bolat, M., Akdemir, E., Karakoç, Ö. & Kalkan, H. (2012). A case study on conception
levels of science and technology teacher candidates’ basic astronomy concepts. Journal of Research
in Education and Teaching, 1(2), 202–209.
Türnüklü, A. (2000). Eğitimbilim araştırmalarında etkin olarak kullanılabilecek nitel bir araştırma tekniği:
Görüşme. Eğitim Yönetimi, 6(4), 543-559.
Ucar, S. & Demircioğlu, T. (2011). Changes in preservice teacher attitudes toward astronomy within a
semester-long astronomy instruction and four-year-long teacher training programmed. Journal of
Science Education Technology, 20, 65–73.
Ünsal, Y., Güneş, B. & Ergin, İ. (2001). A study to investigate the fundamental astronomy knowledge
levels of undergraduate students. Gazi University Journal of Gazi Educational Faculty, 21(3), 47-60.
Vignouli, V., Hart, C. & Fry, M. (2002). What does it mean to teach physics "in context"? A second case
study. Australian Science Teachers Journal, 48(3), 6-8.
Wilhelm, J. A., Smith, W. S., Walters, K. L., Sherrod, S. E. & Mulholland, J. (2007). Engaging pre-service
teachers in multinational multi-campus scientific and mathematical inquiry. International Journal of
Science and Mathematics Education, 6, 131-162.
Yıldırım, A. & Şimşek, H. (2008). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayıncılık.
Yilmaz, S. S., Othan, O. & cantimur, E. (2014). Yaşam temelli öğrenme yaklaşimina (YTÖY) göre elektrik,
madde ve isi konularinin işlenmesinin öğrenci başarisina etkisi. e-Kafkas Eğitim Araştırmaları Dergisi,
1(3), 41-49.
Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: an effort to enhance
students' conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23(2),
120-132.

Thank you for copying data from http://www.arastirmax.com