Buradasınız

Üniversite Öğrencilerinin Kavram Yanılgılarının Ontoloji Temelinde İncelenmesi

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Problem Statement: An efficient science education is directly associated with the quality of conceptual teaching which is implemented in science lessons. Conflicts and inconsistencies in students’ learning should be revealed in order for a life-long and meaningful learning of the concepts to take place (Akgün, Gönen, & Yılmaz, 2005). Students may have various misconceptions about a concept; however, the misconceptions of each student may result from different characteristics or erroneous categorization. For this reason, the incorrect ontological categorization from which misconceptions result should be determined. This is because many misconceptions are the result of scientifically incorrect ontological categorization made by students. In the literature, it is stated that students’ misconceptions are associated with their scientific reasoning skills and students with high scientific reasoning skills have fewer misconceptions (Lawson & Thompson, 1988; Lawson & Worsnop, 1992; Oliva, 2003). There are three levels: concrete operational, transitional and formal operational and students will be at different levels. Therefore, when assessing their scientific reasoning levels, students at a formal operational level will be expected to understand the concepts of melting and dissolving better than students at a concrete operational level and to have fewer misconceptions related to this subject. Purpose of the Study: The purpose of the present study is to reveal university students’ misconceptions about the subject of melting and dissolving and to examine these misconceptions on the basis of ontological categories. It also aims to compare students’ misconceptions about the subject of melting and dissolving according to their scientific reasoning levels. Method(s): A total of 25 students from the Faculty of Education, Hacettepe University attending a General Chemistry course in the Biology Education Department participated in the study. Five open-ended questions, prepared according to experts’ opinions, and the Classroom Test of Scientific Reasoning (CTSR) were used as the data collecting instruments. According to the scores obtained from the CTSR, there were 7 students at a concrete operational level and 9 students at both the transitional and formal operational level. Findings and Discussions: When the students’ responses to the questions were examined, it was determined that they had various misconceptions and the number of certain misconceptions was higher in students at the concrete operational level. On the other hand, when students’ answers to the open-ended questions were examined, it was determined that their misconceptions resulted from ontological categorizations they had made which were ontologically wrong. It was determined that students had misconceptions as a result of a wrong categorization between ontological categories. Conclusions and Recommendations: When the students’ responses to the questions were examined, it was determined that they had various misconceptions and the number of certain misconceptions was higher in students at the concrete operational level. This is because students at the concrete operational level can only understand concrete concepts while students at the formal operational level can understand both concrete and abstract concepts (Lawson & Renner, 1975). For this reason, students at the concrete operational level have more misconceptions. There is a relationship between students’ misconceptions and their scientific reasoning skills (Lawson & Thompson, 1988; Lawson & Worsnop, 1992; Oliva, 2003). Students with a high scientific reasoning level have fewer misconceptions than students with a low scientific reasoning level. This is also because students with a high scientific reasoning level are more successful during conceptual changes (Lawson & Weser, 1990; Oliva, 2003; Lee & She, 2010; She & Liao, 2010). When students’ answers to the open-ended questions were examined, it was determined that their misconceptions resulted from ontological categorizations they had made which were ontologically wrong. It was determined that students had misconceptions as a result of a wrong categorization that they had made between the microscopic particle, which is a sub category of the substance category, and the macroscopic substance. It was also determined that students misplaced the melting with dissolving category in the event category, which is actually under the process category. Students attributed concrete features to intermolecular bonds and put chemical bonds in the substance category instead of the process category. For this reason, they categorized the items incorrectly, which resulted in the misconceptions.
Abstract (Original Language): 
Bu çalışmanın amacı, üniversite öğrencilerinin erime ve çözünme konusunda sahip oldukları kavram yanılgılarını ortaya çıkarmak ve bu kavram yanılgılarını ontolojik kategoriler temelinde incelemektir. Ayrıca öğrencilerin erime ve çözünme konusunda sahip oldukları kavram yanılgıları bilimsel düşünme düzeylerine göre karşılaştırılmak istenmiştir. Çalışmaya Hacettepe Üniversitesi Eğitim Fakültesi Biyoloji Eğitimi Anabilim Dalında Temel Kimya dersini alan toplam 25 öğrenci katılmıştır. Çalışmada veri toplama aracı olarak, uzman görüşüne başvurularak hazırlanan beş açık uçlu soru ve Bilimsel Düşünme Yetenekleri Testi (BDYT) kullanılmıştır. BDYT’den elde edilen puanlara göre somut operasyon döneminde 7, geçiş ve soyut operasyon döneminde 9’ar öğrenci bulunmaktadır. Öğrencilerin verdikleri cevapların analizi sonucu öğrencilerin erime ve çözünme konusunda çeşitli kavram yanılgılarına sahip oldukları belirlenmiştir. Öğrencilerin madde kategorisinin alt kategorisi olan mikroskobik tanecik ile makroskobik madde kategorileri arasında yaptıkları yanlış kategorileştirmeler sonucu kavram yanılgılarına sahip oldukları belirlenmiştir. Ayrıca süreç kategorisinin bir alt kategorisinde yer alan olay kategorisindeki erime ve çözünme kategorilerinin de öğrenciler tarafından birbiriyle karıştırıldığı belirlenmiştir.
54-72

REFERENCES

References: 

Abraham, M.R., Grzybowski, E.B., Renner, L.W. & Marek, E.A. (1992). Understandings and
misunderstandings of eighth graders of five chemistry concepts found in textbooks.
Journal of Research in Science Teaching, 29, 105-120.
Akgün, A. & Aydın, M. (2009). Erime ve çözünme konusundaki kavram yanılgılarının ve
bilgi eksikliklerinin giderilmesinde yapılandırmacı öğrenme yaklaşımına dayalı grup
çalışmalarının kullanılması. Elektronik Sosyal Bilimler Dergisi, 8(27), 190-201.
Akgün, A., Gönen, S. & Yılmaz, A. (2005). Fen bilgisi öğretmen adaylarının karışımların
yapısı ve iletkenliği konusundaki kavram yanılgıları. Hacettepe Üniversitesi Eğitim
Fakültesi Dergisi, 28,1–8.
Ateş, S. (2002). Sınıf Öğretmenliği ve fen bilgisi öğretmenliği 3. sınıf öğrencilerinin bilimsel
düşünme yeteneklerinin karşılaştırılması. V. Ulusal Fen Bilimleri ve Matematik Eğitimi
Kongresi, Ankara: ODTÜ Eğitim Fakültesi.
Bauner, M. & Schoon, I. (1993). Mapping variety in public understanding of science. Public
Understanding of Science, 2(2), 141-155.
Blanco, A. & Prieto, T. (1997). Pupils’ views on how stirring and temperature affect the
dissolution of a solid in a liquid: A cross-age study (12 to 18). International Journal of
Science Education, 19(3), 303-315.
Boo, H. & Watson, J.R. (2001). Progression in high school students’ (aged 16-18)
conceptualizations about chemical reactions in solution. Science Education, 85, 568-
585.
Bruner, J.S., Goodnow, J.J., & Austin, G.A. (1962). A study of thinking. New York: Science
Editions. İçinden Önder, İ. (2006). The effect of conceptual change approach on
students’understanding of solubility equilibrium concept. Doctorate Thesis, Middle East
Technical University, Ankara.
Chi, M.T.H. (1992). Conceptual change within and across ontological categories: examples
from learning and discovery in science. In R. N. Giere (ed.) Cognitive Models of
Science, Minneapolis, MN: University of Minnesota Press.
Chi, M.T.H. & Roscoe, R.D. (2002). The processes and challenges of conceptual change.
Limon, M. & Mason, L. (Eds), Reconsidering conceptual change: Issues in theory and
practice (s. 3-27). The Netherlands: Kluwer Academic Publishers.
Chi, M.T.H. & Slotta, J.D. (1993). The ontological coherence of intuitive physics.
Commentary on A. diSessa’s “Toward an epistemology of physics.” Cognition and
Instruction, 10, 249–260.
Chi, M.T.H., Slotta, J.D. & Leeuw, N. (1994). From things to process: A theory of conceptual
change for learning science concepts. Learning and Instruction, 4, 27–43.
Cohen, S.M. (2009). Aristotle's Metaphysics, The Stanford Encyclopedia of Philosophy
(Spring 2009 Edition), Edward N. Zalta (ed.), [Online] Erişim tarihi 19.01.2011,
.
Çalık, M. & Ayas, A. (2005). 7.-10. sınıf öğrencilerinin seçilen çözelti kavramlarıyla ilgili
anlamalarının farklı karışımlar üzerinde incelenmesi. Gazi Üniversitesi Türk Eğitim
Bilimleri Dergisi, 3(3), 329–349.
Çalık, M., Ayas, A. & Ünal, S. (2006). Çözünme kavramıyla ilgili öğrenci kavramalarının
tespiti: Bir yaşlar arası karşılaştırma çalışması. Gazi Üniversitesi Türk Eğitim Bilimleri
Dergisi, 4(3), 309-322.
Demircioğlu, G., Özmen, H. & Demircioğlu, H. (2006). Sınıf öğretmeni adaylarının fiziksel
ve kimyasal değişme kavramlarını anlama düzeyleri ve yanılgıları. Milli Eğitim Dergisi,
170, 260-273.
Demircioğlu, H., Ayas, A. & Demircioğlu, G. (2002). Sınıf öğretmen adaylarının kimya
kavramlarını anlama düzeyleri ve karşılaşılan yanılgılar. V. Ulusal Fen Bilimleri ve
Matematik Eğitimi Kongresi Bildiri Özetleri, Ankara: ODTÜ Eğitim Fakültesi.
Ebenezer, J.V. & Erickson, L.G. (1996). Chemistry students’ conception of solubility: A
phenomenograpy. Science Education, 80(2), 181-201.
Eyidoğan, F., & Güneysu, S. (2002). İlköğretim 8. sınıf fen bilgisi kitaplarındaki kavram
yanılgılarının incelenmesi. V. Fen Bilimleri ve Matematik Eğitimi Kongresi, Ankara:
ODTÜ.
Gensler, W. (1970). Physical versus chemical change. Journal of Chemical Education,
47(2), 154-155.
Goodwin, A. (2002). Is salt melting when it dissolves in water? Journal of Chemical
Education, 9(3), 93-96.
Karaer, H. (2007). Sınıf öğretmeni adaylarının madde konusundaki bazı kavramların
anlaşılma düzeyleri ile kavram yanılgılarının belirlenmesi ve bazı değişkenler açısından
incelenmesi. Kastamonu Eğitim Dergisi, 15(1), 199-210.
Lawson, A.E. (1978). The development and validation of a classroom test of formal
reasoning. Journal of Research in Science Teaching, 15, 11–24.
Lawson, A.E. & Renner, J.W. (1975). Relationships of science subject matter and
developmental levels of learners. Journal of Research in Science Teaching, 12, 347–
358.
Lawson, A.E. & Thompson, L. (1988). Formal reasoning ability and misconception
concerning genetics and natural selection. Journal of Research in Science Teaching,
25(9), 733–746.
Lawson, A.E. & Weser, J. (1990). The rejection of nonscientific beliefs about life: Effects of
instruction and reasoning skills. Journal of Research in Science Teaching, 27, 589–606.
Lawson, A.E., & Worsnop, W.A. (1992). Learning about evolution and rejecting a belief in
special creation: Effects of reflective reasoning skill, prior knowledge, prior belief and
religious commitment. Journal of Research in Science Teaching, 29(2), 143–166.
Lee, C.Q. & She, H.C. (2010). Facilitating students’ conceptual change and scientific
reasoning ınvolving the unit of combustion. Research in Science Education, 40(4), 479–
504.
Levy Nahum,T., Hofstein, A., Mamlok-Naaman, R. & Bar-Dov, Z. (2004). Can final
examinations amplify students’ misconceptions in chemistry? Chemistry Education:
Research and Practice, 5(3), 301-325.
Malatyalı, E. & Yılmaz, K. (2010). Yapılandırmacı öğrenme sürecinde kavramlar ve önemi:
Kavramların pedagojik açıdan incelenmesi. Uluslararası Sosyal Araştırmalar Dergisi,
3(14), 320–332.
Nakhleh, M.B. (1992). Why some students don't learn chemistry? Journal of Chemical
Education, 69, 191–196.
Oliva, J.M. (2003). The structural coherence of students’ conceptions in mechanics and
conceptual change. International Journal of Science Education, 25(5), 539–561.
Özalp, D. (2008). İlköğretim ve ortaöğretim öğrencilerinin maddenin tanecikli yapısı
konusundaki kavram yanılgılarının ontoloji temelinde belirlenmesi. Yüksek Lisans
Tezi, Marmara Üniversitesi, İstanbul.
Özalp, D. & Kahveci, A. (2011). Maddenin tanecikli yapısı ile ilgili iki aşamalı tanılayıcı
soruların ontoloji temelinde geliştirilmesi. Milli Eğitim Dergisi, 191, 135–156.
Özkan Ö., Tekkaya C. & Çakıroğlu J. (2002). Fen Bilgisi Aday Öğretmenlerinin Fen
Kavramlarını Anlama Düzeyleri, Fen Öğretimine Yönelik Tutum ve Öz-yeterlik
İnançları. V. Ulusal Fen Bilimler ve Matematik Eğitimi Kongresi, Ankara: ODTÜ.
Prieto, T., Blanco, A. & Rodriguez, A. (1989). The ideas of 11 to 14-year-old students about
the nature of solutions. International Journal of Science Education, 11(4), 451-463.
Sanmarti, N., Izquierdo, M. & Watson, J.R. (1995). The substantialisation of properties in
pupils’ thinking and in the history of science. Science and Education, 4, 349-369.
She, H.C. & Liao, Y.W. (2010). Bridging scientific reasoning and conceptual change through
adaptive web-based learning. Journal of Research in Science Teaching, 47(1), 91–119.
Sommers, F. (1963). Types and Ontology. The Philosophical Review, 7(3),327-363.
Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate student’s
misconceptions in science. Journal Of Biological Education, 10(2), 159–169.
Uslu, S. (2010). İlkçağ felsefesi. Eskişehir: Anadolu Üniversitesi yayını No: 1944,1025.
Ünal Çoban, G. & Ergin, Ö. (2010). İlköğretim öğrencilerinin bilimsel bilginin varlık alanına
yönelik görüşlerini belirleme ölçeği. İlköğretim Online, 9(1), 188–202.
Watson, J. R., Prieto, T., & Dillon, J. S. (1997). Consistency in students’ explanations about
combustion. Science Education, 81, 425-444.

Thank you for copying data from http://www.arastirmax.com