Buradasınız

TOPRAK KÖKENLİ FUNGAL PATOJENLERİN FLUORESAN PSEUDOMONADLARLA BİYOLOJİK MÜCADELESİ

BIOLOGICAL CONTROL OF SOIL-BORNE FUNGAL PATHOGENS BY FLUORESCENT PSEUDOMONADS

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Soil-borne fungal pathogens are highly destructive and can cause a significant economic yield loss in seedlings. The application of fungicides to control soil-borne fungal pathogens has been increasingly limited by the development of pathogen resistance to many fungicides, expensive ve negative public perception regarding the safety of fungicides. Biological control methods, reducing the population of pathogens in the soil, appear to be most practical method. Fluorescent pseudomonads have frequently been considered as effective biological control agents against soil-borne fungal pathogens because of their rapid and aggressive colonization of plant root.
Abstract (Original Language): 
Fideliklerde toprak kökenli fungal patojenler, oldukça tahripkardırlar ve ekonomik derecede önemli ürün kayıplarına neden olurlar. Toprak kökenli fungal patojenlerin mücadelesinde fungisit uygulaması; patojenin fungisitlere dayanıklılık kazanması, bu fungisitlerin pahalı olması ve güvenirlilikleri konusunda insanların olumsuz yaklaşımı gibi faktörler nedeniyle giderek sınırlanmaktadır. Biyolojik mücadele yöntemleri, topraktaki patojenlerin populasyon varlıklarını azaltan en pratik yöntemdir. Fluoresan pseudomonadlar ise bitki köklerinde hızlı ve agresif koloni oluşturduklarından toprak kökenli fungal patojenlere karşı etkili biyolojik mücadele etmenleri olarak düşünülmektedir.
364-369

REFERENCES

References: 

Buyer and Leong, 1986. Iron transport-mediated antagonism between plant growth promoting and plant-deleterious Pseudomonas strains. Journal of Biological Chemistry, (261), 791-794.
Buysens,
S.
, Heungens, K., Poppe, J. And Höfte, M., 1996. Involment of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Applied and Environmental Microbiology, (62), 865-871.
Chet and Inbar, 1994. Biological control of fungal pathogens. Applied Biochemistry and Biotechnology, (48), 37-43.
Chin, A.W., de Priester, T.F.C., van der Bij, A. and Lugtenberg, B.J.J., 1997. Description of the colonization of agnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Molecular Plant-Microbe Interactions, (10), 79-86.
Şekil
2
. Kök üzerinde bir fluoresan Pseudomonas türüne ait mikro koloni oluşumu.
367
Toprak Kökenli Fungal Patojenlerin Fluoresan Pseudomonadlarla Biyolojik Mücadelesi
Chin, A.W., Bloemberg, G.V., Mulders, I.H.M., Dekkers, L.C. and Lugtenberg, B.J.J., 2000. Root colonization by phenazine-1-carboximide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Molecular Plant-Microbe Interactions, (13), 1340-1345.
Chin, A.W., Thomas-Oates, J.E., Lugtenberg, B.J.J. and Bloemberg, G.V., 2001. Introduction of the phzH Gene of Pseudomonas chlororaphis PCL1391 extends the range of phenazine-1-carboximide acid-producing Pseudomonas spp. strains. Molecular Plant-Microbe Interactions, (14), 1006-1015.
Cook, R.J., 1993. Make greater use of introduced microorganisms for biological control of plant pathogens. Annual Review of Phytopathology, (31),
53-80.
De Boer, M., Van der Sluis, I., Van Loon, L.C. and Bakker, P.A.H.M., 1999. Combining fluorescent Pseudomonas spp. strains to enhance suppression of fusarium wilt of radish. European Journal of Plant Pathology, (105),
201-210.
Dekkers, L.C., Mulders, I.H.M., Phoelich, C.C., Chin,
A.W., Wijfjes, A.H.M., Lugtenberg, B.J.J., 2000. The
sss colonization gene of the tomato - Fusarium oxysporum f.sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild - type Pseudomonas spp. bacteria. Molecular Plant-Microbe Interactions, (13),
1177-1183.
De la Cruz, A.R., Poplawsky, A.R. and Wiese, M.V., 1992. Biological suppression of potato ring rot by Fluorescent Pseudomonads. Applied and Environmental
Microbiology, (58), 1986-1991.
De Meyer, G. and Höfte, M., 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea
on bean. Phytopathology, (87), 588-593.
De
Souz
a J.T., Weller, D.M. and Raaijmakers, J.M., 2003. Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology, (93), 966-975.
De Weger, L.A., Van der Bij, Dekkers, A.J., Simons, L.C., Wijffelman, C.A. and Lugtenberg, B.J.J., 1995. Colonization of the rhizosphere of crop plants by plant beneficial pseudomonads. FEMS Microbiology Letters,
(17), 221-228.
Elad, Y. and Baker, R., 1985. Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology 75, 1047-1052 (1985).
Fenton, A.M., Stephen, P.M., Crowley, J., O'Callaghan, M. And O'Gara, F., 1992. Exploitation of gene(s) involved in 2,4 diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Applied and Environmental Microbiology, 58: 3873¬3878.
Gamard, P. and De Boer, S.H., 1995. Evaluation of antagonistic bacteria for suppression of bacterial ring rot of potato. European Journal of Plant Pathology, (101), 519-525.
Girlanda, M., Perotto, S., Moenne-Loccoz, Y., Borgero, R., Lazzari, A., Defago, G., Bonfante, P. and Luppi, A.M., 2001. Impact of biocontrol Pseudomonas fluorescens CHA0 and genetically modified derivative on the diversity of culturable fungi in the cucumber
rhizosphere. Applied and Environmental Microbiology,
(67), 1851-1864.
Gulati, M.K., Koch, E., Zeller, W. and Sister, H.D., 1999. Isolation and identification of antifungal metabolites produced by fluorescent Pseudomonas, antagonist of red core disease of strawberry. 12th International Reinhardsbrunn Symposium, Friedrichroda, Thruringia,
Germany, 437-444. Hill, D.S., Stein, J.I., Torkewitz, N.R., Morse, A.M., Howell, C.R., Pachlatko, J.P., Becker, J.O. and Ligon,
J.M., 1994. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Applied and Environmental Microbiology, (60),
78-85.
Janisiewicz, W.I. and Korsten, I., 2002. Biological control of postharvest disease of fruits. Annual Review of
Phytopathology, (40), 411-441. Landa, B.B., Mavrodi, O.V., Raajmakers, J.M., McSpadden Gardener, B.B., Thomashow, L.S. and Weller, D.M., 2002. Differential ağabeylity of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Applied and Environmental Microbiology, (68), 3226¬3227.
Lim, H.S., Kim, Y.S., and Kim, S.D., 1991. Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Applied and Environmental Microbiology,
(57), 510-516.
Keel, C., Wirthner, P., Oberhansli, T., Voisard, C., Burger, U., 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Molecular Plant-Microbe Interactions, (5), 4-13.
Keel, C., Voisard, C., Berling, C.H., Kahr, G. And Defago, G., 2004. Iron sufficiency, a prerequisite for suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0, Kluwer Academic/Plenum Publishers,
New York,147-172.
Kloepper, J.W., Leong, J., Teintze, M. and Schroth, M.N., 1980. Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr. Microbiol. (4), 317-320.
Kraus, J. and Loper, J.E., 1992. Lack of evidence for role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off cucumber. Phytopathology, (82), 264-271.
Lucy, M., Reed, E. and Glick, B.R., 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek (86), 1-25.
Loper, J.E. and Buyer, J.S., 1991. Siderophores in microbial interactions on plant surfaces. Molecular Plant-Microbe Interactions, (4), 5-13.
Mahaffee, W.F. and Klopper, J.W., 1997. Bacterial communities of the rhizosphere and endorhiza associated with field-grown cucumber plants inoculated with a plant growth-promting rhizobacterium or its genetically modified derivate. Canadian Journal of
Microbiology, (43), 344-353. Maurhofer, M., Keel, C., Schnider, U., Voisard, C., Haas, D. and Defago, G., 1992. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity.
Phytopathology, 82:190-195.
368
H. M. Aksoy
Maurhofer, M., Keel, C., Haas, D. and Defago, G., 1995.
Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced antibiotic production. Plant Pathology, 44: 40-50. McCullagh, M., Utkhede, R., Menzies, J.G., Punja, J.K. and Paultiz, T.C., 1996. Evaluation of plant growth-promoting rhizobacteria for biological control of Pythium root rot of cucumbers grown in rock wool and effects on yield. European Journal of Plant Pathology,
(102), 747-755.
Meyer, J.M., Azelvandre, P. and Georges, C., 1992. Iron metabolism in Pseudomonas: salicylic acid, a siderephore of Pseudomonas fluorescens strain CHA0.
Biofactors, (4), 23-27.
Mukerji, K.G. and Garg, K.L., 1988a. Biocontrol of Plant
Diseases. Vol. I CRC Pres, Florida, USA, pp. 211.
Mukerji, K.G. and Garg, K.L., 1988b. Biocontrol of Plant
Diseases. Vol. II CRC Pres, Florida, USA, pp. 198. Natsch, A., Keel, C., Pfirter, H.A., Haas, D. and Defago, G., 1994. Contribution of the global regulator gene gacA to persistence and dissemination of Pseudomonas fluorescens biocontrol strain CHA0 introduced into soil microcosms. Applied and Environmental Microbiology,
(60), 2553-2560.
Natsch, A., Keel, C., and Hebecker, N., 1998. Impact of Pseudomonas fluorescens strain CHA0 and derivative with improved biocontrol activity on the culturable resident bacterial community on cucumber roots. FEMS Microbiology and Ecology, (27), 365-380.
Park,
C.S.
, Paulitz, T.C. and Baker, R., 1988. Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and non-pathogenic isolates of Fusarium oxysporum. Phytopathology, (78),
190-194.
Pillay, V.K.
an
d Nowak, J., 1997. Inoculum density, temperature and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonas bacterium. Canadian
Journal of Microbiology, (43), 354-361. Raaijmakers, J.M., Vlami, M. and De Souza, J.T., 2002.
Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek, (81), 537-547.
Sneh, B. Dupler, M., Elad, Y. And Baker, R., 1984.
Chlamydospore germination of Fusarium oxysporum f.sp. cucumerinum as effected by fluorescent and lytic bacteria from Fusarium suppressive soils. Phytopathology, (74), 1115-1124. Sugimoto, E.E., Hoitink, H.A.J. and Tuovinen, O.H., 1990. Oligotrophic pseudomonads in the rhizosphere: Suppressiveness to Pythium damping off cucumber seedlings (Cucumis sativus L.) Biology Fertility of
Soils, (9), 231-234.
Utkhede, R.S., Koch, C.A., and Menzies, J.G., 1992. Promotion of apple tree growth and fruit production by the EBW-4 strain of Bacillus subtilis in apple replant disease soil. Canadian Journal of Microbiology, (38),
1270-1273.
Van Peer, R. And Schippers, B., 1988. Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic culture, Canadian Journal of Microbiology,
(35), 456-463.
Vessey, K.J., 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, (255), 571-586.
Vincent, M.N., Harrison, L.A., Brakin, J.M., Kovacevich, P.A., Mukerji, P., Weller, D.M. and Pierson, E.A., 1991. Genetics analysis of antifungal activity of soilborne Pseudomonas aerufaciens strain. Applied and Environmental Microbiology, (57), 2928-2934.
Walsh, U.F., Morrissey, J.P. and O'Gara, F., 2001. Pseudomonas for biocontrol phytopathogens: from functional genomics to commercial explotion. Current Opinion in Biotechnology, (12), 289-295.
Weller, D.M. and Cook, R.J., 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology, (73), 463-469.
Weller, D.M., Raaijmakers, J.M., Gardener, B.B.M. and Thomashow, L.S., 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, (40),
309-348.
Zhang, W., Han, D.Y., Dick, W.A., Davis, K.R., and
Hoitink, H.A.J., 1998. Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology, (88), 450¬455.

Thank you for copying data from http://www.arastirmax.com