You are here

Serbest Radikal Biyokimyasının Tarihsel Süreçteki Gelişimi

The Evolution of Free Radical Biochemistry in Historical Perspective

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
The existence of free radicals, as chemical entities, was inferred 100 years ago but not universally accepted for nearly 40 years. The existence and importance of free radicals in biological systems was not recognized until the mid 1950’s, by a small number of visionary scientists who can be credited with founding the field of reactive oxygen biochemistry. For most of the remaining 20th century, reactive oxygen species (ROS) were considered a type of biochemical “rusting agent” that caused tissue damage and disease. As we enter 21st century, reactive oxygen biochemistry is maturing as a discipline and establishing its importance among the biomedical sciences. It is now recognized that virtually every disease state involves some degree of oxidative stress. Moreover, we are now beginning to recognize that ROS are produced in a well-regulated manner to help maintain homeostasis on the cellular level in normal, healthy tissue. Emerging technologies, particularly proteomic technologies are discussed in scientific community that will facilitate further evolution in the field of free radical biochemistry.
Abstract (Original Language): 
Serbest radikallerin kimyasal olarak mevcudiyeti konusunda, yaklaşık 100 yıl önce bir sonuca ulaşılmakla birlikte, varlıkları ilk 30-40 yıl boyunca dünya çapında kabul görmemiştir. Serbest radikallerin biyolojik sistemlerdeki varlığı ve önemi 1950’lerin ortalarına kadar kabul görmese de, reaktif oksijen biyokimyasını kuran bir grup bilim adamının katkıları ile varlıkları ve önemleri aydınlatılmıştır. Yirminci yüzyılın ikinci yarısının büyük bir kısmında, reaktif oksijen türevlerine, doku hasarı ve hastalığına yol açan bir tür biyokimyasal “oksitleyici ajan” gözüyle bakılmıştır. Yirmibirinci yüzyıla girerken reaktif oksijen biyokimyası bir disiplin olarak olgunlaşmış ve biyomedikal bilimler arasındaki önemi yerleşmiştir. Günümüzde hemen her hastalığın bir dereceye kadar oksidatif strese bağlı olduğu kabul edilmektedir. Ayrıca günümüzde, reaktif oksijen türevlerinin (ROS) homeostazisini devam ettirmeye yardımcı olmak üzere, normal ve sağlıklı dokuların hücrelerinde sıkı-kontrollü bir şekilde oluştuğu kabul görmeye başlamıştır. Ortaya çıkan yeni teknolojilerin, özellikle proteomik teknolojilerin, reaktif oksijen biyokimyası alanında ilerideki gelişmeleri kolaylaştıracağı konusu bilimsel çevrelerce tartışılmaktadır.
162 - 167

REFERENCES

References: 

1. Kopáni M, Celec P, Danisovic L, Michalka P, Biró C.
Oxidative stress and electron spin resonance. Clin
Chim Acta 2006; 364: 61-66.
2. Staroverov VN, Davidson ER. Distribution of effectively
unpaired electrons. Chem Phys Lett 2000; 330: 161-
168.
3. Fenton HJH. On a new reaction of tartaric acid. Chem
News 1876: 33; 190.
4. Fenton HJH. The oxidation of tartaric in the presence
of iron. J Chem Soc Proc 1894; 10: 157-158.
5. Fenton HJH. Constitution of a new dibasic acid, resulting
from the oxidation of tartaric acid. J Chem Soc
Trans 1896; 69: 546-562.
6. Koppenol WH. The centennial of the Fenton reaction.
Free Radical Biol Med 1993; 15: 645-651.
7. Schoepfle CS, Bachmann WE. Moses Gomberg 1867-
1947. J Am Chem Soc 1948; 69: 2915-2921.
8. Ihde AJ. The history of free radicals and Moses Gomberg’s
contributions. Pure and Applied Chemistry
1967; 30: 1-16.
9. Gomberg M. An instance of trivalent carbon: Triphenylmethyl
J Am Chem Soc 1900; 22: 757-771.
10. McBride JM. The hexaphenylethane riddle. Tetrahedron
1974; 30: 2009-2022.
11. Tidwell TT. Sterically crowded organic molecules:
synthesis, structure and properties. Tetrahedron 1978;
34: 1855-1868.
12. Binger CAL, Faulkner JL, Moore RL. Oxygen poisoning
in mammals. J Exp Med 1927; 45: 849-864.
13. Haber F, Willstätter R.Unpaarigheit und radikalketten
im reaktion-mechanismus organischer und enzymatischer
vorgänge. Chem Ber 1931; 64: 2844-2856.
14. Haber F, Weiss J. Über die katalyse des hydroperoxydes.
Naturwiss 1932; 51: 948-950.
15. Commoner B, Townsend J, Pake GE. Free radicals in
biological materials. Nature 1954; 174: 689-691.
16. Devasagayam TPA, Tilak JC, Boloor KK Sane KS,Ghaskadbi
SS, Lele RD. Free radicals and antioxidants in
human health: Current status and future prospects.JAPI
2004; 52: 794-804.
17. Gershman R, Gilbert DL, Nye SW, Dwyer P, FennWO.
Oxygen poisoning and X-irradiation a mechanism in
common. Science 1954; 119: 623-626.
18. McCord JM, Fridovich I. Superoxide dismutase; an
enzymic function for erythrocuprein (hemocuprein).
J Biol Chem 1969; 244: 6049-6055.
19. Harman D. The biologic clock: the mitochondria? J
Am Geriatric Soc 1972; 20: 145-147.
20. Richter C. Do mitochondrial DNA fragments promote
cancer and aging? FEBS Lett 1988; 241:1-5.
21. Palmer RMJ, Ferrige AG, Moncado S. Nitric oxide release
accounts for the biological activity of endothelium-
derived relaxing factor. Nature 1987;327: 524-526.
22. Ignarro LJ, Buga JM, Wood KS, Byrns RS, Chaudhuri
G. Endothelium-derived relaxing factor produced
and released from artery and vein is nitric oxide.Proc
Natl Acad Sci USA 1987; 84: 9265-9269.
23. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman
BA. Apparent hydrokyl radical production by peroxynitrite:
Implications for endothelial injury from
nitric oxide and superoxide. Proc Natl Acad Sci USA
1990; 87: 1620-1624.
24. Snyder SH. Janus faces of nitric oxide. Nature 1993;
364: 577.
25. Lymar SV, Hurst JK. Rapid detection between peroxynitrite
and carbon dioxide: implications for biological
activity. J Am Chem Society 1995; 117: 8867-8868.
26. Wenworth P, McDunn JE, Wentworth AD, Takeuchi
C, Nieva J, Jones T, Bautista C, Ruedi JM, Gutierrez
A, Janda KD, Babior BM, Eschnmoser A, Lerner RA.
Evidence for antibody-catalyzed ozone formation in
bacterial killing and inflammation. Science 2002;298:
2195-2199.
27. Yoshikawa T, Toyokuni S, Yamamoto Y, Naito Y.(eds).
Free radicals in Chemistry Biology and Medicine,
OICA International, London, 2000.
28. Stephens HN. Studies in auto-oxidation. I. Cyclohexene
peroxide. (Preliminary communication). J Am Chem
Soc 1928; 50; 568-571.
29. Farmer EH. α-Methylenic reactivity in olefinic and polyolefinic
systems. Trans Faraday Soc 1942; 38: 340-348.
30. Farmer EH. The course of autoxidation reactions in
polyisoprenes and allied compounds. Part I. The structure
and reactive tendencies of the peroxides of simple
olefins. J Chem Soc 1942, 121-139.
31. Porter NA. Autoxidation of polyunsaturated lipids.Factors
controlling the stereochemistry of product hydroperoxides.
J Am Chem Soc 1980; 102: 5597-5601.
32. Porter NA, Wolf RA, Yarbro EM, Weenen H. The autooxidation
of arachidonic acid: formation of the proposed
SRS-A intermediate. Biochem Biophys Res Comm
1979; 89:1058-1064.
33. Porter NA, Byers JD, Holden KM, Menzel DB. Synthesis
of prostoglandin H2. J Am Chem Soc 1979; 101:
4319-4322.
34. Porter NA, Weenen H. High performance liquid chromatographic
seperations of phospholipids and phospholipid
oxidation products. Methods Enzymol 1981;
72: 34-40.
U. ÇAKATAY ve ark.
35. Bokov A, Chaudhuri A, Richardson A. The role of oxidative
damage and stress in aging. Mech Aging Dev
2004; 125: 811-826.
36. Swallow AJ. Radiation chemistry of organic compounds.
New York, John Wiley&Sons, 1960; 211-224.
37. Garrison WM, Jayko ME, Bennett W. Radiation induced
oxidation of protein in aqueous solution. Rad Research
1962; 16: 483-502.
38. Schuessler H, Schilling K. Oxygen effect in radiolysis
of proteins. Part 2. Bovine serum albumin. Int J Radiat
Biol 1984; 45: 267-281.
39. Stadtman ER. Protein modification in aging. J Gerontol
1988; 43: 112-120.
40. Stadtman ER, Levine RL. Free radical-mediated oxidation
of free amino acids and amino acid residues
in proteins. Amino Acids 2003; 25: 207-218.
41. Levine RN Oxidative modification of glutamine synthetase.
Inactivation is due to loss of one histidine residue.
J Biol Chem 1983; 258: 11823-11827.
42. Oliver CN, Ahn B, Moerman EJ, Goldstein S, Stadtman
ER. Age-related changes in oxidized proteins. J Biol
Chem 1987; 262: 5488-5491.
43. Stadtman ER. Biochemical markers of aging. Exp Gerontol
1988; 23: 327-347.
44. Stadtman ER. Protein oxidation and aging. Science
1992; 257: 1220-1224.
45. Frenkel K, Goldstein MS, Teebor GW. Identification
of the cis-thymine glycol moiety in chemically oxidized
and gamma-irradiated deoxyribonucleic acid by
high-pressure liquid chromatography analysis. Biochemistry
1981; 26: 7566-7571.
46. Floyd RA, Watson JJ, Wong PK Altmiller DH, Rickard
RC. Hydroxyl free radical adduct of deoxyguanosine:
sensitive detection and mechanism of formation. Free
Radical Res Commun 1986; 1: 163-172.
47. Richter C, Park J, Ames BN. Normal oxidative damage
to mitochondrial and nuclear DNA is extensive. Proc
Natl Acad Sci USA 1988; 85: 6465-6467.
48. Dizdaroğlu M, Gajewski E. Selectedion mass spectrometry:
assays of oxidative DNA damage. Methods
Enzymol 1990; 186: 530-544.
49. Fraga CG, Shigenaga MK, Park J, Degan P, Ames BN.
Oxidative damage to DNA during ageing: 8-hydroxy-
2’-deoxyguanosine in rat organ DNA and urine. Proc
Natl Acad Sci USA 1990; 87: 4533-4537.
50. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants,
and the degenerative diseases of aging.
Proc Natl Acad Sci USA 1993; 90: 7915-7922.

Thank you for copying data from http://www.arastirmax.com